cho 1/x+1/y+1/z=1/xyz
cmr;1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
Cho x,y,z>0 và x+y+z = xyz
CMR
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\le\dfrac{3}{2}\)
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\Rightarrow ab+bc+ca=1\)
Đặt vế trái là P, ta có:
\(P=\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\)
\(P=\dfrac{a}{\sqrt{a^2+ab+bc+ca}}+\dfrac{b}{\sqrt{b^2+ab+bc+ca}}+\dfrac{c}{\sqrt{c^2+ab+bc+ca}}\)
\(P=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)+\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)+\dfrac{1}{2}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)
Cho x, y, z là các số dương thỏa mãn điều kiện: xy + yz + xz = xyz
CMR: \(\dfrac{1}{x+4y+9z}\le\dfrac{1}{36}\)
\(xy+yz+xz=xyz\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)
\(đặt\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\)
\(\Rightarrow\dfrac{1}{x+4y+9z}=\dfrac{1}{\dfrac{1}{a}+\dfrac{4}{b}+\dfrac{9}{c}}\le\dfrac{1}{\dfrac{\left(1+2+3\right)^2}{a+b+c}}=\dfrac{1}{36}\left(đpcm\right)\)
Cho x, y, z >0 thỏa mãn x + y + z= xyz
CMR: \(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+xz}+\dfrac{z}{z^2+xy}\le\dfrac{\sqrt{3}}{2}\)
\(x+y+z=xyz\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(VT\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}\)
\(VT\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\le\dfrac{1}{2}\sqrt{3\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)}=\dfrac{\sqrt{3}}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
cho x/y+z+1 = y/z+1+x = z/1+x+y = 1/x+y+z. CMR biểu thức sau có giá trị nguyên: A = x+y/z+1 = y+z/1+x = z+1/x+y = 1+x/y+z
Cho x,y,z thoa man x^3+y^3+z^3=1 va x((1/y)+(1/z))+y((1/z)+(1/x))+z((1/x)+(1/y))=-2 Tinh 1/x + 1/y + 1/z
Cho x( 1/y + 1/z ) + y( 1/z + 1/x ) + z( 1/x + 1/y ) = -2 và x³+y³+z³ = 1
Tính: A= 1/x + 1/y + 1/z
mọi người giúp mình đi mình cần gắp lắm á
Cho x*y*z=1 Tính giá trị biểu thức (1/x*y+x+1)+(1/Y*z+y+1)+(1/x*y*z+y*z+y)
Cho x,y,z>0 và x+y+z=1 . Tìm MinP = ∑ \(\dfrac{1}{x+y+1}\)
Cho x,y,z>0 và x+y+z =1 . Tìm Min A = ∑ \(\dfrac{x}{y^2+x^2+1}\)
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
cho x, y, z khác 0 và x+y+z khác 0 và 1/x+1/y+1/z=1/x+y+z .
chứng minh 1/x^2015+1/y^2015+1/z^2015=1/x^2015+y^2015+z^2015
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{z-\left(x+y+z\right)}{z\left(x+y+z\right)}\)\(\Leftrightarrow\)\(\frac{x+y}{xy}=\frac{-\left(x+y\right)}{z\left(x+y+z\right)}\)
\(\Leftrightarrow\)(x + y)z(x + y + z) + (x + y)xy = 0
\(\Leftrightarrow\)(x + y) [z(x + y + z) + xy] = 0
\(\Leftrightarrow\)(x + y)[z(x + z) + y(x + z)] = 0
\(\Leftrightarrow\) (x + y)(y + z)(z + x) = 0
Trường hợp 1: x + y = 0\(\Leftrightarrow\)x = -y\(\Leftrightarrow\)x2015 = -y2015\(\Leftrightarrow\)\(\frac{1}{x^{2015}}=-\frac{1}{y^{2015}}\)\(\Leftrightarrow\)\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}=0\)
và x2015 + y2015 = 0. Do đó \(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)
Trường hợp 2: y + z = 0 làm tương tự
Trường hợp 3: x + z = 0 làm tương tự
Vậy bài toán được chứng minh.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy nha
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web
cho x,y,z là cạnh 1 ∆. cmr 1/x+y-z +1/x+z-y +y+z-x>= 1/x+1y+1/z
Do x;y;z là các cạnh của 1 tam giác nên \(\left\{{}\begin{matrix}x+y-z>0\\y+z-x>0\\z+x-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{x+y-z}+\frac{1}{x+z-y}\ge\frac{4}{x+y-z+x+z-y}=\frac{2}{x}\)
Tương tự: \(\frac{1}{x+y-z}+\frac{1}{y+z-x}\ge\frac{2}{y}\) ; \(\frac{1}{y+z-x}+\frac{1}{x+z-y}\ge\frac{2}{z}\)
Cộng vế với vế:
\(2\left(\frac{1}{x+y-z}+\frac{1}{y+z-x}+\frac{1}{x+z-y}\right)\ge\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(\Leftrightarrow\frac{1}{x+y-z}+\frac{1}{y+z-x}+\frac{1}{z+x-y}\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Dấu "=" xảy ra khi \(x=y=z\)