tìm m và n để đương thẳng y=(m-4)x+n đi qua điểm a(2;-1)và song song với đường thẵng y=2x
Cho đường thẳng (d); y=(m-2)x+n ( m khác 2). Tìm m và n để đường thẳng (d) đi qua 2 điểm A(-1;2) và B(3;-4)
a) Tìm m, n để đường thẳng y = (2m -1)x + n (d) đi qua điểm A(2; -1) và B(1;4)
b) Tìm m để đường thẳng y = (m + 3)x + m (d) song song với đường thẳng y = 4x-1(d’)
b: Để (d)//(d') thì m+3=4
hay m=1
cho parabol (P): \(y=\dfrac{1}{4}x^{2}\) và đường thẳng (d): y=mx+n. Tìm giá trị của m,n để (d) đi qua điểm A(-1;-2) và tiếp xúc với (P)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Cho đường thẳng (d):y=(m-2)x+n với m khác 2
Tìm m vsf n để đường thẳng (d) đi qua 2 điểm A (-1; 2); B(3; -4)
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}a+b=5\\2a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=2\end{matrix}\right.\)
b:
1: Thay x=-1 và y=3 vào (d), ta được:
\(2\cdot\left(-1\right)-a+1=3\)
=>-a-1=3
=>-a=4
hay a=-4
cho đường thẳng d y = (m + 2) x + m Tìm m để d
a, song song với đường thẳng d1 : y = -2 x + 3
b ,vuông góc với đường thẳng d2 : y = 1 / 3 x + 1
C, đi qua điểm N( 1,3)
D, Tìm điểm cố định Mà D luôn đi qua với mọi m
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
\(d,\) Gọi điểm đó là \(A\left(x_1;y_1\right)\)
\(\Leftrightarrow y_1=\left(m+2\right)x_1+m\\ \Leftrightarrow y_1-mx_1-2x_1-m=0\\ \Leftrightarrow-m\left(x_1+1\right)+y_1-2x_1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+1=0\\y_1-2x_1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\y_1=-2\end{matrix}\right.\)
Vậy \(A\left(-1;-2\right)\) luôn đi qua D với mọi m
Bài 2. Cho hàm số y=(m−1)x+n có đồ thị là đường thẳng d a) Tìm m và n để đường thẳng d đi qua hai điểm A(1;2), B(2;5). b) Tìm m và n biết đường thẳng d có hệ số góc bằng 3, cắt trục hoành tại điểm có hoành độ bằng –2. c) Tìm m và n biết đường thẳng d trùng với đường thẳng d:y=5x-3. Bài 3. a) Cho hai đường thẳng d:y=(m-3)x-3m+3, d, :y=(2m+1)x+m+5 Tìm m để hai đường thẳng cắt nhau; song song với nhau; vuông góc với nhau; trùng nhau; cắt nhau tại một điểm nằm trên trục tung. b) Tìm m để ba đường thẳng d:y=2x+5,d:y=x+2,d :y=mx−12 đồng quy
2
a)
d đi qua A (1;2), B(2;5)
=> Ta có hệ phương trình: \(\left\{{}\begin{matrix}\left(m-1\right).1+n=2\\\left(m-1\right).2+n=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+n=3\\2m+n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=4\\n=-1\end{matrix}\right.\)
b)
d có hệ số góc a = 3 => d: y = 3x + n
=> m -1 = 3 <=> m = 4
d cắt Ox tại x = -2, y = 0 \(\Leftrightarrow0=3.\left(-2\right)+n\) => n = 6
c)
d trùng d' \(\Rightarrow\left\{{}\begin{matrix}m-1=5\\n=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=6\\n=-3\end{matrix}\right.\)
Tìm giá trị của m và n để đường thẳng y=(m-1)x+2n song song với đường thẳng y=x-2 và đi qua điểm (1;4)
gọi (d): y=(m-1)x+2n ; (d'): y=x-2
điều kiện để (d) là hsbn: m khác 1
điều kiện để (d) // (d'): {\(\hept{\begin{cases}m-1=1==>m=2\\2nkhác-2==>nkhác-1\end{cases}}\)
thay m=2 vào (d) ta có y=x+2n
do (d) đi qua (1;4)=> 4=1+2n => n=3/2
vậy với m=2, n=3/2 thì thỏa mãn đề bài
Cho đường thẳng y = (m – 2)x + n (m ≠ 2). (d)
Tìm các giá trị của m và n trong mỗi trường hợp sau:
Đường thẳng (d) đi qua hai điểm A(-1;2), B(3; -4);
Đường thẳng y = (m – 2)x + n (d) đi qua hai điểm A(-1;2) và B(3; -4). Khi đó tọa độ các điểm A, B thỏa mãn (d), nghĩa là:
2 = (m – 2)(-1) + n (1)
và -4 = (m – 2).3 + n (2)
Rút gọn hai phương trình (1) và (2), ta được
-m + n = 0; (1’)
3m + n = 2. (2’)
Từ (1’) suy ra n = m. Thay vào (2’), ta có 3m + 3 = 2 suy ra m = 1/2.
Trả lời: Khi m = n = 1/2 thì (d) đi qua hai điểm A và B đã cho.