Trong mặt phẳng Oxy, cho tam giác ABC với A(1;1), B(3;5) và C(5;-1)
a) tìm tọa độ trọng tâm G và tính chu vi của Tam giác ABC
b) tìm tọa độ điểm D để tứ giác ABCD là hình thang với đáy lớn BC và
BC = 2AD
Trong mặt phẳng Oxy cho tam giác ABC biết A(1;-1), B(5;-3), C(0;1). Tính chu vi Tam giác ABC
\(AB=\sqrt{\left(5-1\right)^2+\left(-3+1\right)^2}=2\sqrt{5}\)
\(AC=\sqrt{\left(0-1\right)^2+\left(1+1\right)^2}=\sqrt{5}\)
\(BC=\sqrt{\left(0-5\right)^2+\left(1+3\right)^2}=\sqrt{29}\)
=>C=3 căn 5+căn 29
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(2;-1), B(4;5) và C(-3;2). Lập phương trình đường cao của tam giác ABC kẻ từ A.
A. 7x + 3y - 11 = 0
B. -3x + 7y + 13 = 0
C. 3x + 7y + 1 = 0
D. 7x + 3y + 13 = 0
Chọn A.
Gọi AH là đường cao của tam giác ABC ⇒ AH ⊥ BC.
B(4;5), C(-3;2)
Phương trình đường cao AH đi qua A(2;-1) nhận là VTPT là:
7.(x - 2) + 3.(y + 1) = 0 ⇔ 7x - 14 + 3y + 3 = 0 ⇔ 7x + 3y - 11 = 0
Vậy phương trình đường cao AH là 7x + 3y - 11 = 0.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(-2;4), B(4;1), C(-2;-1). Tìm tọa độ trực tâm H tam giác.
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3).B(0;2),c(2;1). tình chu vi của tam giác ABC
\(AB=\sqrt{\left(0+1\right)^2+\left(2+3\right)^2}=\sqrt{26}\)
\(AC=\sqrt{\left(2+1\right)^2+\left(1+3\right)^2}=\sqrt{3^2+4^2}=5\)
\(BC=\sqrt{\left(2-0\right)^2+\left(1-2\right)^2}=\sqrt{5}\)
=>\(C=\sqrt{26}+5+\sqrt{5}\left(cm\right)\)
Trong mặt phẳng oxy cho tam giác abc biết A(2;-1), B(3;-3),C (0;1). Tính chu vi Tam giác abc
\(\overrightarrow{AB}=\left(1;-2\right)\Rightarrow AB=\sqrt{5}\)
\(\overrightarrow{AC}=\left(-2;2\right)\Rightarrow AC=2\sqrt{2}\)
\(BC=\left(-3;4\right)\Rightarrow BC=5\)
Chu vi tam giác ABC: \(AB+AC+BC=\sqrt{5}+2\sqrt{2}+5\)
Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(-1;1\right);B\left(1;3\right);C\left(1;-1\right)\). Chứng minh tam giác ABC là tam giác vuông cân tại A ?
\(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)
\(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\) nên \(AB\perp AC\). (1)
\(AB=\sqrt{2^2+2^2}=2\sqrt{2}\).
\(AC=\sqrt{2^2+\left(-2\right)^2}=2\sqrt{2}\)
Vì vậy AB = AC. (2)
Từ (1) và (2) suy ra tam giác ABC vuông cân tại A.
trên mặt phẳng oxy cho tam giác abc với A(2;-1) B(-1;2) C(-4;-1) viết phương trình đường tròn ngoại tiếp tam giác abc
Gọi (C): x^2+y^2-2ax-2by+c=0 là PT đường tròn ngoại tiêpΔACB
Theo đề, ta có:
2^2+(-1)^2-4a+2b+c=0 và 1+4+2a-4b+c=0 và 16+1+8a+2b+c=0
=>-4a+2b+c=-5 và 2a-4b+c=-5 và 8a+2b+c=-17
=>a=-1; b=-1; c=-7
=>x^2+y^2+2x+2y-7=0
=>x^2+2x+1+y^2+2y+1=9
=>(x+1)^2+(y+1)^2=9
Trong không gian tọa độ Oxy cho tam giác ABC biết A(1;0;-1), B(2;3;-1), C(-2;1;1). Phương trình đường thẳng đi qua tâm đường tròn ngoại tiếp cảu tam giác ABC và vuông góc với mặt phẳng (ABC).
A. x - 3 3 = y - 1 - 1 = z - 5 5
B. x 3 = y - 2 1 = z 5
C. x - 1 1 = y - 2 = z + 1 2
D. x - 3 3 = y - 2 1 = z 5
Đáp án A
=> ∆ ABC vuông tại A
Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC, I(0;2;0)
Đường thẳng d qua tâm I và vuông góc mặt phẳng (ABC) được xác định
q u a I ( 0 ; 2 ; 0 ) V T C P : u → = 1 2 A B → , A C → = ( 3 ; - 1 ; 5 )
Vậy phương trình của d là x - 3 3 = y - 1 - 1 = z - 5 5
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; 1), B(4; 13), C(5; 0). Tọa độ trực tâm H của tam giác ABC là
A.(2; 2)
B. (1; 1)
C.( -2; -2)
D. (-1; -1)
A B → = 3 ; 12 , A C → = 4 ; − 1 ⇒ ( A B ) ⃗ . ( A C ) ⃗ = 3 . 4 + 12 . ( - 1 ) = 0 ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B
Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(6,0); B(3,1); C(-1,-1).Tính số đo góc B của tam giác đã cho
\(\left\{{}\begin{matrix}\overrightarrow{BA}=\left(3;-1\right)\\\overrightarrow{BC}=\left(-4;-2\right)\end{matrix}\right.\)
\(\Rightarrow cos\widehat{ABC}=cos\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\dfrac{3.\left(-4\right)+1.2}{\sqrt{3^2+1^2}.\sqrt{\left(-4\right)^2+\left(-2\right)^2}}=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{ABC}=135^0\)