Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Vũ
Xem chi tiết
Vy Thanh
Xem chi tiết
Vy Thanh
22 tháng 2 2020 lúc 23:03

cho minh hoi dung cai diem laf no keu minh lam gif he

Khách vãng lai đã xóa
kiệt hào
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 13:50

\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{5+\left(-1\right)}{2}=2\end{matrix}\right.\)

\(\Rightarrow I\left(1;2\right)\)

kiệt hào
6 tháng 1 2022 lúc 13:50

Giúp mik với

 

Lê Nhật Tiền
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
29 tháng 9 2023 lúc 23:59

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

nguyễn minh trang
Xem chi tiết
Phương Ngọc Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 3 2019 lúc 16:57

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2018 lúc 3:46

Chọn A.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
28 tháng 9 2023 lúc 23:43

Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC}  = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID}  = \left( {m - 4,n - 2} \right)\)

Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.

Vậy ta có:\(\overrightarrow {AI}  = \overrightarrow {IC} \)và \(\overrightarrow {BI}  = \overrightarrow {ID} \)

Ta có: \(\overrightarrow {AI}  = \left( {7;1} \right)\) và \(\overrightarrow {BI}  = \left( {5; - 1} \right)\)

Do \(\overrightarrow {AI}  = \overrightarrow {IC}  \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)

Do \(\overrightarrow {BI}  = \overrightarrow {ID}  \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)