Cho x ² + y ² + z ² = 3 và x; y; z >0 . Tìm giá trị lớn nhất của
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
cho x,y,z nguyên và (x-y)*(y-z)*(z-x)=m. Chứng minh rằng: (x-y)^3 + (y-z)^3 + (z-x)^3 chia hết cho m
Một bài toán "lừa" người ta:
Đặt \(a=x-y,b=y-z,c=z-x\Rightarrow a+b+c=0\).
Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Trong trường hợp này thì \(a+b+c=0\) nên suy ra đpcm.
Cho x,y,z thỏa mãn x^3-y^2-y=y^3-z^2-z=z^3-x^2-x=1/3
Chứng minh rằng x,y,z dương và x=y=z
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`
`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`
Ad bđt cosi-swart:
`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`
Mà `xy+yz+zx<=x^2+y^2+z^2)`
`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`
Dấu "=" xảy ra khi `x=y=z=1`
`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`
`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`
`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`
Áp dụng BĐT cosi-swart ta có:
`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`
Mà`xy+yz+zx<=x^2+y^2+z^2`
`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`
Dấu "=" xảy ra khi `x=y=z=1.`
cho và x;y;z >0 và x+y+z+xy+xz+yz =6 tìm GTNN của x^3/y + y^3/z + z^3/x
\(A=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\)
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Leftrightarrow\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)
\(\Leftrightarrow x+y+z\ge3\)(vì \(x,y,z>0\))
Ta có: \(\frac{x^3}{y}+y+1\ge3x,\frac{y^3}{z}+z+1\ge3y,\frac{z^3}{x}+x+1\ge3z\)
Suy ra \(A\ge2\left(x+y+z\right)-3\ge2.3-3=3\)
Dấu \(=\)xảy ra khi \(x=y=z=1\).
cho x,y,z là các số khác nhau và x+Y+Z = 2016. tính giá trị biểu thức:
A= x^3/ (x-y)(x-z) + y^3/(y-x)(y-z) + z^3/(z-x)(z-y)
Cho x,y,z là các số nguyên thoả (x-y)^3 + (y-z)^3 + (z-x)^3=210 và x-y, y-z, z-x đều khác +-1. Tính giá trị của biểu thức A= |x-y| + |y-z| + |z-x|
Cho x,y,z>0 và x+y+z=2020
CMR: a, x^4+y^4/x^3+y^3 + y^4+z^4/y^3+z^3 + z^4+x^4/z^3+x^3 >=2020
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
tìm x,y,z biết:
a) 10.x = 6.y = 5.z và x + y -z = 24
b) 2.x = 3.y = -2.x và 2.x - 3.y + 4.z=48
c)7.x = 3.y , 4.y =3.z và x -y+z =49
giúp mình nha nhanh mình tick cho!
cho x, y, z khác 0 và x+y+z=0. chứng minh rằng (x²+y²+z²)*3/(x*3+y*3+z*3)² >=4