ĐỐ CÁC BN :
Giá trị của biểu thức -7y^{3}x^{2} -8y^{3}x^{2} tại x=2 ; y=2
Cho biểu thức 7x3 – (8y)2. Tính giá trị biểu thức tại x = 3 và y =1.
\(7.3^3-\left(8.1\right)^2=7.27-8^2=189-64=125\)
Áp dụng hằng đẳng thức, tính giá trị biểu thức:
a.A=x^3-3x^2+3x+1012 tại x=11
b.B=x^3-6x^2+12x-108 tại x=12
c.C=x^3+6x^2y+12xy^2+8y^3 tại x=-2y
d.D=x^3+9x^2+27x+2027 tại x=-23
\(...=A=x^3-3x^2+3x-1+1013\)
\(A=\left(x-1\right)^3+1013=\left(11-1\right)^3+1013=1000+1013=2013\)
\(...B=x^3-6x^2+12x-8-100\)
\(B=\left(x-2\right)^3-100=\left(12-2\right)^3-100=1000-100=900\)
\(...C=\left(x-2y\right)^3=\left(-2y-2y\right)^3=\left(-4y\right)^3=-64y^3\)
\(...D=x^3+9x^2+27x+9+2018\)
\(D=\left(x+3\right)^3+2018=\left(-23+3\right)^3+2018=-8000+2018=-5982\)
a) \(A=x^3-3x^2+3x+1012\)
\(A=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1+1013\)
\(A=\left(x-1\right)^3+1013\)
Thay x=11 vào A ta có:
\(A=\left(11-1\right)^3+1013=10^3+1013=1000+1013=2013\)
b) \(B=x^3-6x^2+12x-108\)
\(B=x^3-3\cdot2\cdot x^2+3\cdot2^2\cdot x-8-100\)
\(B=\left(x-2\right)^3-100\)
Thay x=12 vào B ta có:
\(B=\left(12-2\right)^3-100=10^3-100=1000-100=900\)
c) \(C=x^3+6x^2y+12xy^2+8y^3\)
\(C=x^3+3\cdot2y\cdot x^2+3\cdot\left(2y\right)^2\cdot x+\left(2y\right)^3\)
\(C=\left(x+2y\right)^3\)
Thay x=-2y vào C ta được:
\(C=\left(-2y+2y\right)^3=0^3=0\)
d) \(D=x^3+9x^2+27x+2027\)
\(D=x^3+3\cdot3\cdot x^2+3\cdot3^2\cdot x+27+2000\)
\(D=\left(x+3\right)^3+2000\)
Thay x=-23 vào D ta có:
\(D=\left(-23+3\right)^3+2000=\left(-20\right)^3+2000=-8000+2000=-6000\)
Tính giá trị biểu thức:
a) [ - 5 ( x - 4 y ) 3 + 7 ( x - 4 y ) 2 ]:2(4y - x) tại x = -2; y = - 1 2 ;
b) [ ( 3 x + 2 y ) 3 + 9 x 2 + 12xy + y 2 ]:(8y + 12x) tại x = 2 3 ; y = - 1 2 .
tính giá trị của biểu thức sau:
a)2x-\(\dfrac{y\left(x^2-2\right)}{xy+y}\)tại x=0;y=-1
b)A=4x^2-3IxI-2 tại x=2 và x=-3
c)B=5x^2-7y+6 tại x=-1/5;y=-3/7
a.\(x=0;y=-1\)
\(\Rightarrow2.0-\dfrac{-1\left(0^2-2\right)}{0.-1-1}=0-\dfrac{2}{-1}=2\)
b.\(x=2\)
\(\Rightarrow4.2^2-3\left|2\right|-2=16-6-2=8\)
\(x=-3\)
\(\Rightarrow4.\left(-3\right)^2-3\left|-3\right|-2=36-9-2=25\)
c.\(x=-\dfrac{1}{5};y=-\dfrac{3}{7}\)
\(\Rightarrow5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6=5.\dfrac{1}{25}+3+6=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x=2 và biểu thức A ta đc
\(A=4.2^2-3.\left|2\right|-2=4.4-6-2=16-6-2=8\)
thay x=-3 biểu thức A ta đc
\(A=4.\left(-3\right)^2-3.\left|-3\right|-2=4.9-9-2=36-9-2=25\)
thay x=-1/5 ; y=-3/7 biểu thức B ta đc
\(B=5.\left(-\dfrac{1}{5}\right)^2-7.\left(-\dfrac{3}{7}\right)+6\)
\(B=5\cdot\dfrac{1}{25}+3+6\)
\(B=\dfrac{1}{5}+3+6=\dfrac{46}{5}\)
thay x =0 , y= -1 và biểu thức ta đc
\(0-\dfrac{\left(-1\right)\left(0^2-2\right)}{0.\left(-1\right)+\left(-1\right)}=0-\dfrac{2}{-1}=0+2=2\)
1.Tính giá trị biểu thức: 6x^2+5x-2 tại x thõa mãn /x-2/=1
2.Tính giá trị biểu thức: 2x^8-3y^5+2 tại x,y thõa mãn (x+1)^20+(y+2)^26=0
3.Tính giá trị biểu thức: P=6x^3-4x^2y-14y^2+21xy+9 tại x,y thõa mãn 2x^2+7y=0
Mình đang cần gấp lắm ạ, mong mọi người giúp, mình cảm ơn nhiều ạ
câu 1. Tìm giá trị nhỏ nhất của biểu thức
a) \(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
b) \(B=x^2-4x+y^2-8y+6\)
câu 2. Tính giá trị của biểu thức sau: \(T=2\left(x^3+y^3\right)-3\left(x^2+v^2\right)\)với x+y=1
giúp mị với mí bn ơi
a, A = (x-1)(x+6) (x+2)(x+3)
= (x^2 + 5x -6 ) (x^2 + 5x + 6)
Đặt t = x^2 +5x
A= (t-6)(t+6)
= t^2 - 36
GTNN của A là -36 khi và ck t= 0
<=> x^2 +5x = 0
<=> x=0 hoặc x=-5
Vậy...
tính giá trị biểu thức
a)3,2^2-4.1,6.6,8+6,8
c)x^3-6x^2+12xy^2-8y^2 tại x=100, y=49
Thu gọn các biểu thức sau rồi tính giá trị
a) A= 3x2 + 2x - x2 + 4 - x + 2 tại x=1; x=1/2
b) B= 4x - 7y + 3x - 2 + y - 3 tại x = 3 ; y = -2
a, \(A=2x^2+x+6\)
Với x = 1 suy ra A = 2 + 1 + 6 = 9
Với x = 1/2 suy ra A = 1/2 + 1/2 + 6 = 7
b, \(B=7x-6y-5\)Thay x = 3 ; y = -2 ta được
B = 7.3 - 6 ( - 2 ) - 5 = 21 + 12 - 5 = 33 - 5 = 28
Cho biểu thức 1 3 1 . 1 1 2 x x x A x x 1) Tìm điều kiện của x để biểu thức A được xác định. 2) Rút gọn biểu thức A. 3) Tính giá trị của biểu thức A tại x 5. 4) Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
1. ĐKXĐ: \(x\ne\pm1\)
2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)
\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-3}{x-1}\)
3. Tại x = 5, A có giá trị là:
\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)
4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)
Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)
Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)