Tìm m để 3 đường thẳng: y = 2x + 1 ; y = (2m - 1)x - m + 3 ; y = x - 2 đồng quy tại 1 điểm
1. Tìm tọa độ giao điểm 2 đường thẳng: y = 3x + 2 và y = 2x - 3
2. Tìm m để 3 đường thẳng y = 3x + 2 ; y = 2x - 3; y = (m - 2)x + 3 - m đồng quy
1) Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2-2x+3=0\\y=3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\cdot\left(-5\right)+2=-15+2=-13\end{matrix}\right.\)
Vậy: Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là (-5;-13)
2) Đặt (d1): y=3x+2;
(d2): y=2x-3;
(d3): y=(m-2)x+3-m
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=2\cdot\left(-5\right)-3=-13\end{matrix}\right.\)
Để (d1), (d2) và (d3) đồng quy thì (d3) đi qua tọa độ giao điểm của (d1) và (d2)
Thay x=-5 và y=-13 vào (d3), ta được:
\(\left(m-2\right)\cdot\left(-5\right)+3-m=-13\)
\(\Leftrightarrow-5m+10+3-m+13=0\)
\(\Leftrightarrow-6m+26=0\)
\(\Leftrightarrow-6m=-26\)
hay \(m=\dfrac{13}{3}\)
Vậy: Để 3 đường thẳng y=3x+2; y=2x-3 và y=(m-2)x+3-m đồng quy thì \(m=\dfrac{13}{3}\)
Cho hàm số y=(m-2)x + 3 (1) Tìm m để đường thẳng (1) cắt đường thẳng y = 2x + 1
Để hai đường thẳng cắt nhau thì m-2<>2
hay m<>4
Để hai đường thẳng cắt nhau thì m-2<>2
hay m<>4
a.biết đường thẳng y=ax+b đi qua điểm M(\(2;\dfrac{1}{2}\)) và song song với đường thẳng 2x+y=3. tìm các hệ số a và b
b.tìm m để đường thẳng y=2x-1 và đường thẳng y=3x+m cắt nhau tại một điểm nằm trên trục hoành
c.tìm m để đường thẳng y=-3x+6 và đường thẳng y=\(\dfrac{5}{2}\)x-2m+1 cắt nhau tại 1 điểm trên trục tung
2x+y=3
=>y=-2x+3
hàm số y=ax+b song song với y=-2x+3
=> hàm số có dạng y=-2x+b
Hàm số đi qua M(2;1/2)
=>\(\dfrac{1}{2}.2-2\)
=>b=-7/2
Vậy \(a=-2;b=\dfrac{7}{2}\)
Tìm m để đường thẳng y = (2m + 3)x + m - 1 và đường thẳng y = 2x + 3 cắt nhau tại 1 điểm trên trục hoành
Thay y=0 vào y=2x+3, ta được:
2x+3=0
hay \(x=-\dfrac{3}{2}\)
Thay \(x=-\dfrac{3}{2}\) và y=0 vào y=(2m+3)x+m-1, ta được:
\(-\dfrac{3}{2}\left(2m+3\right)+m-1=0\)
\(\Leftrightarrow-3m-\dfrac{9}{2}+m-1=0\)
\(\Leftrightarrow-2m=\dfrac{11}{2}\)
hay \(m=-\dfrac{11}{4}\)
Cho 3 đường thẳng d1:y=x-4,d2:y=2x+3,d3:y=mx+m+1.tìm m để 3 đường thẳng trên đồng quy
Tọa độ giao điểm của (d1) và (d2) là:
\(\left\{{}\begin{matrix}2x+3=x-4\\y=x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-x=-4-3=-7\\y=x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-7\\y=-7-4=-11\end{matrix}\right.\)
Thay x=-7 và y=-11 vào (d3), ta được:
-7m+m+1=-11
=>-6m=-11-1=-12
=>m=12/6=2
Bài 1: Cho hàm số y= (m -3).x+m+2
a) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ = -3
b) Tìm m để đồ thị hàm số song song với đường thẳng y= -2x+1
c) Tìm m để đồ thị hàm số vuông góc với đường thẳng y= -2x-3
Bài 2: Đồ thị hàm số y= ax+b (a ≠ 0) và đường thẳng y = a'x+ b' ( b ≠ 0). Khi a.a'= -1
(mink đag cần gấp)
Để hàm số y=(m-3)x+m+2 là hàm số bậc nhất thì \(m-3\ne0\)
hay \(m\ne3\)
a) Để đồ thị hàm số y=(m-3)x+m+2 cắt trục tung tại điểm có tung độ bằng -3 thì
Thay x=0 và y=-3 vào hàm số y=(m-3)x+m+2, ta được:
\(\left(m-3\right)\cdot0+m+2=-3\)
\(\Leftrightarrow m+2=-3\)
hay m=-5(nhận)
b) Để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1 thì
\(\left\{{}\begin{matrix}m-3=-2\\m\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Vậy: Không có giá trị nào của m để đồ thị hàm số y=(m-3)x+m+2 song song với đường thẳng y=-2x+1
Tìm m để đường thẳng y = 2x - 3 và đường thẳng y = 3x + m cắt nhau tại điểm có tung độ bằng 1
Thay y=1 vào y=2x-3, ta được:
2x-3=1
hay x=2
Thay x=2 và y=1 vào y=3x+m, ta được:
m+6=1
hay m=-5
Cho 3 đường thẳng d1: y=x-4 : d2: y=2x+3 : d3: y=mx+m+1
Tìm m để 3 đường thẳng trên đồng quy.
Xét pthđ giao điểm của d1 và d2
x-4=2x+3
<=> x= -7
Thay x=-7 vào d1
y=-7-4=-11 => A(-7:-11) là giao điểm d1 và d2
Thay x=-7 vào d3 -> y=m(-7)+m+1=-6m+1=-11
- Để d1 d2 d3 đq -> A \(\in\)d3
-> -6m+1=-11
-6m=-12
m=2
Vậy m=2 thì 3 đường thẳng d1 , d2 , d3 đq
chúa bạn học tốt
Tìm m để đường thẳng y=(m-1)x+m-2 cắt đường thẳng y=2x-3 tại một điểm có tung độ bằng 5
Thay tung độ bằng 5 vào phương trình \(y=2x-3\) ta được:
\(5=2x-3\Rightarrow x=4\) \(\Rightarrow\) tọa độ giao điểm là (4;5)
Thay tọa độ giao điểm vào pt đường thẳng:
\(5=\left(m-1\right).4+m-2\Rightarrow5m=11\Rightarrow m=\dfrac{11}{5}\)
Cho hàm số y = (m-1)x + 2 (1)
a) Tìm m để hàm số (1) là hàm số đồng biến;
b) Tìm m để đồ thị hàm số (1) là đường thẳng song song với đường thẳng y = 2x;
c) Tìm m để đồ thị của hàm số (1) đồng quy với hai đường thẳng y-3= 0 và y = x-1
d) Chứng minh đồ thị hàm số (1) luôn đi qua điểm cố định với mọi m.
a: Để hàm số đồng biến thì m-1>0
hay m>1