Cho x^3 + 3xy^2 =2020 ; y^3 + 3x^2y =2019
Tính M = x^2 + y^2
Cho 3 số x,y,z thỏa mãn:
x3 + y3 = z( 3xy - z2 ) và x + y +z = 3
Tính A = 673( x2020 + y2020 + z2020 ) + 1
( Dự định có thể x = y = z = 1 )
GIẢI GIUWPS MÌNH NHA !
\(x^3+y^3=z\left(3xy-z^2\right)\)
\(\Rightarrow x^3+y^3=3xyz-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)
Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)
Mà \(x+y+z=3\Rightarrow x=y=z=1\)
Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)
\(=673.3+1=2020\)
Vậy \(A=2020.\)Chúc bạn học tốt.
Giải phương trình nghiệm nguyên
x3-3xy2+y3=2020
Tính giá trị của các biểu thức :
1) E= (3x^2-4xy) - (-y^2+3xy) với 3x - 4y = 0
2) F= x^2.y^2 + 3x^3.y^3 - x^6.y^6 tại x=2020 và y= -1/2020
3) G= x^5 - 2012.x^4 + 2012.x^3 +2012.x-2012 tại x=2011
Cho x,y là các số thực thỏa mãn 4x^2 + y^2= 8+3xy
Tìm GTLN của biểu thức P=xy +2020
Ta có: \(4x^2+y^2=8+3xy\Leftrightarrow4x^2-4xy+y^2=8-xy\)
\(\Leftrightarrow\left(2x-y\right)^2=8-xy\ge0\forall x,y\inℝ\Rightarrow xy\le8\)
\(\Rightarrow P=xy+2020\le8+2020=2028\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}2x=y\\xy=8\end{cases}}\Rightarrow\left(x,y\right)\in\left\{\left(2;4\right);\left(-2;-4\right)\right\}\)
Cho x,y là các số thực thỏa mãn 4x^2 + y^2= 8+3xy
Tìm GTLN của biểu thức P = xy +2020
\(3xy+8=4x^2+y^2\ge4xy\)
\(\Rightarrow xy\le8\)
\(\Rightarrow P\le8+2020=2028\)
\(P_{max}=2028\) khi \(2x=y=\pm4\)
2^3.19-2^3.14+1^2020
10^2-[60:(5^6:5^4-3.5)]
160:{17+[3^2.5-(14=2^7:2^4)]}
798+100:[16-2(5^2022)]
t^2+5t-6 khi t=2
(a+b)^2-(b-a)^3+2012 khi a=5;b=a+1
x^3-3x^2y=3xy^2-y^3 khi x=3;y=2
23.19 - 23.14 + 12020
= 23.(19 - 14) + 1
= 8.5 + 1
= 41
102 - [60: (56: 54 - 3.5)]
= 100 - [60: (52 - 15)]
= 100 - [60: (25 - 15)]
= 100 - [60 : 10]
= 100 - 6
= 94
160: {17 + [32.5 - ( 14 + 27:24)]}
= 160: {17 + [9.5 - (14 + 23)]}
= 160: {17 + [45 - (14 + 8)]}
= 160: {17 + [45 - 22]}
= 160: {17 + 23}
= 160 : 40
= 4
Cho x+y=2
Tính A=x^3+y^3+3xy*(x+y)
B=x^2+2xy+y^2+4
C=x^3+y^3+3xy*(x+y)+7*(x+y)
A=x^3 + y^3 + 3xy(x+y)
=x+3x^y+3xy^2+y^3
=(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
=(x+y)^2+4=4+4=8
C=x^3+y^3+3xy(x+y)+7(x+y)
=(x+y)^3+7(x+y)
=2^3+7.2
=8+14=22
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)