Vs x,y thỏa mãn ; x-\(\sqrt{x+6}=\sqrt{y+6}\) -y
Tìm GTLN,GTNN của P= x+y
Số cặp (x;y)(x;y) nguyên thỏa mãn x.y=−3 giúp mình vs
\(\Rightarrow\left[{}\begin{matrix}x=1;y=-3\\x=-1;y=3\\x=3;y=-1\\x=-3;y=1\end{matrix}\right.\) Vậy...
Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow x,y\in\left\{1;-1;3;-3\right\}\)
Vì số cặp (x,y) nguyên thỏa mãn xy=-3 cũng chính là số ước của -3 nên số cặp (x,y) nguyên thỏa mãn xy=-3 là 4 cặp
tìm các số nguyên x,y thỏa mãn |x|+2|y|<2,99 Giups mik vs
Tìm x,y nguyên thỏa mãn x^2(y^2-3)=y(y-x)
Giúp mk vs pls
Èo, bài này mà :)))
Gợi ý nhé bạn Khải béo :
Xét phương trình theo ẩn x thì được****************
Để phương trình này có nghiệm x nguyên thì delta phải là số chính phương. Hay delta = ************** là số chính phương
<=> y = 0 hoạc 4y^2 - 11 = a^2
<=> (2y - a)(2y + a) = 11 => y = 0; 3; -3
Tìm các số nguyên tố x y z thỏa mãn x^y+1=z
Giúp mik vs
* Nếu x lẻ mà y >0 => x^y lẻ => x^y+1=z là chẵn mà z là snt => z=2
=> x^y+1=2=> x^y=1 => x=1 (vô lý vì x là số nguyên tố) => x lẻ (sai)
*Nếu x chẵn mà x là số nguyên tố => x=2 => 2^y+1=z
Quên mất ấn nhầm sory
* Nếu x lẻ mà y >0 => x^y lẻ => x^y+1=z là chẵn mà z là snt => z=2
=> x^y+1=2=> x^y=1 => x=1 (vô lý vì x là số nguyên tố) => x lẻ (sai)
*Nếu x chẵn mà x là số nguyên tố => x=2 => 2^y+1=z
+) y=2 => 2^2+1=z => z=5 (t/m)
+)y>2 mà y là snt => y lẻ => y=2k+1 => z= 2^(2k+1)+1 =4^k.2 +1
Ta có :4 chia 3 dư 1 => 4^k chia 3 dư 1 => 4^k.2 chia 3 dư 2=> z chia hết cho 3
mà z>2^2 +1>3
=>z o là snt => y>2 (sai).
Vậy x=2,y=2,z=5
xy+1= x ⇒ x > 2 ⇒x lẻ ⇒xy + 1 lẻ ⇒ x chẵn ⇒ x = 2
Với y=2 ⇒ x = 5 (thỏa mãn)
Với y > 2 : 2y + 1 : 2 +1 ⇔ x⋮3 vì z là số nguên tố lớn hơn 3 mà z ⋮ 3 nên trường hợp này ko tồn tại. x,y,z thỏa mãn đề bài ( 2y+1⋮2 vì y lẻ)
Vậy (x,y,z)=(2,2,5)
Hok Tốt !
# mui #
Tìm các cặp số nguyên x, y thỏa mãn: 2xy+3x-5y=10
giups mik vs
pt này không phân tích thành nhân tử để làm được đáng lẽ ra 4y thì sẽ làm được ấy bạn
=>4xy+6x-10y=20
=>2y(2x-5)+6x-15=5
=>(2x-5)(2y+3)=5
=>\(\left(2x-5;2y+3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;1\right);\left(5;-1\right);\left(2;-4\right);\left(0;-2\right)\right\}\)
Tìm các số x, y thỏa mãn đồng thời hai điều kiện sau: 4x = 5y và x^2 - y^2 = 1
giúp mình vs
`#3107.101107`
`4x = 5y => x/5 = y/4`
Đặt `x/5 = y/4 = k`
`=> x = 5k; y = 4k`
Ta có: `x^2 - y^2 = 1`
`=> (5k)^2 - (4k)^2 = 1`
`=> 25k^2 - 16k^2 = 1`
`=> 9k^2 = 1`
`=> k^2 = 1 \div 9`
`=> k^2 = 1/9`
`=> k^2 = (+-1/3)^2`
`=> k = +-1/3`
Với `k = 1/3`
`=> x = 1/3*5 = 5/3; y = 1/3*4 = 4/3`
Với `k = -1/3`
`=> x = -1/3*5 = -5/3; y = -1/3*4 = -4/3.`
Tìm tất cả giá trị x,y nguyên thỏa mãn: 16 - 3(y - 3)2 = (2023-x)2
Giúp mik vs mng oiiiiiiii
Lời giải:
Do $(2023-x)^2\geq 0$ với mọi $x$ nên:
$3(y-3)^2=16-(2023-x)^2\leq 16<18$
$\Rightarrow (y-3)^2< 6$
Mà $(y-3)^2\geq 0$ và $(y-3)^2$ là số chính phương với mọi $y$ nguyên.
$\Rightarrow (y-3)^2=0$ hoặc $(y-3)^2=4$
Nếu $(y-3)^2=0$ thì $y=3$.
Khi đó: $(2023-x)^2=16-3.0^2=16$
$\Rightarrow 2023-x=4$ hoặc $2023-x=-4$
$\Rightarrow x=2019$ hoặc $x=2027$
Nếu $(y-3)^2=4\Rightarrow y-3=2$ hoặc $y-3=-2$
$\Rightarrow y=5$ hoặc $y=1$
Khi đó:
$(2023-x)^2=16-3.4=4=2^2=(-2)^2$
$\Rightarrow 2023-x=2$ hoặc $2023-x=-2$
$\Rightarrow x=2021$ hoặc $x=2025$
giúp mik vs ạ!!!
Cho x,y thỏa mãn: x^2 + 2y^2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Có tất cả .... cặp số nguyên (x: y) thỏa mãn 2/x/+ 3/y/=13
( Mọi người giúp mk vs)
Tìm x,y nguyên thỏa mãn : x^4 + y +4= y^2 - x^2
Giúp vs ạ >.< đề này nh` bài khó quá