\(x-\sqrt{x+6}=\sqrt{y+6}-y\)
\(\Leftrightarrow x+y=\sqrt{x+6}+\sqrt{y+6}\)
Áp dụng BĐT Bu nhi a cốp xki ta có :
\(\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\le2\left(x+y+12\right)\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right)-24\le0\)
\(\Leftrightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Leftrightarrow-4\le x+y\le6\)
Vậy \(MIN_P=-4\) khi \(x=y=-2\) ; \(MAX_P=6\) khi \(x=y=3\)