Đặt \(\left\{{}\begin{matrix}x+\sqrt{1+x^2}=a>0\\y+\sqrt{1+y^2}=b>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1+x^2=a^2+x^2-2ax\\1+y^2=b^2+y^2-2by\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
Giả thiết trở thành: \(ab=2018\)
\(P=\dfrac{a^2-1}{2a}+\dfrac{b^2-1}{2b}=\dfrac{1}{2}\left(a+b\right)-\dfrac{a+b}{2ab}\)
\(P=\dfrac{1}{2}\left(a+b\right)\left(1-\dfrac{1}{ab}\right)=\dfrac{1}{2}\left(a+b\right).\dfrac{2017}{2018}\ge\sqrt{ab}.\dfrac{2017}{2018}=\dfrac{2017}{\sqrt{2018}}\)
\(P_{min}=\dfrac{2017}{\sqrt{2018}}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{2017}{2\sqrt{2018}}\)