Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
C-Chi Nợn
Xem chi tiết
YangSu
23 tháng 3 2023 lúc 18:13

\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{x}{3\sqrt{x}-x}\right).\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\left(dkxd:x\ne0;\pm\sqrt{3}\right)\)

\(=\left(\dfrac{2}{\sqrt{x}-3}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right).\left(\sqrt{x}-3\right)\)

\(=\left(\dfrac{2\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right).\left(\sqrt{x}-3\right)\)

\(=\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}}\)

\(=2-\sqrt{x}\)

Vậy \(A=2-\sqrt{x}\)

đặng quốc khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2021 lúc 22:11

Bài 1: 

a) \(\dfrac{a+\sqrt{a}}{\sqrt{a}}=\sqrt{a}+1\)

b) \(\dfrac{\sqrt{\left(x-3\right)^2}}{3-x}=\dfrac{\left|x-3\right|}{3-x}=\pm1\)

Bài 2: 

a) \(\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\left|3x-1\right|}{\left(3x-1\right)\left(3x+1\right)}=\pm\dfrac{1}{3x+1}\)

b) \(4-x-\sqrt{x^2-4x+4}=4-x-\left|x-2\right|=\left[{}\begin{matrix}6-2x\left(x\ge2\right)\\2\left(x< 2\right)\end{matrix}\right.\)

 

Phương Linh
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 9 2021 lúc 9:45

\(a,=\dfrac{x}{y}\cdot\dfrac{\left|x\right|}{y^2}=\dfrac{x^2}{y^3}\\ b,=2y^2\cdot\dfrac{x^2}{\left|2y\right|}=\dfrac{2x^2y^2}{-2y}=-x^2y\)

Trang Nguyễn
Xem chi tiết
An Thy
30 tháng 6 2021 lúc 9:25

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{7-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{7-\sqrt{x}}=\dfrac{x}{\sqrt{x}-7}\)

\(B=\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\left(x>0,x\ne1\right)\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}+1\)

\(=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}+1=-\dfrac{\sqrt{x}+1}{\sqrt{x}}+1\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}}=-\dfrac{1}{\sqrt{x}}\)

Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 12 2023 lúc 13:41

Câu 1:

a: \(\dfrac{2}{5}\sqrt{75}-0,5\cdot\sqrt{48}+\sqrt{300}-\dfrac{2}{3}\cdot\sqrt{12}\)

\(=\dfrac{2}{5}\cdot5\sqrt{3}-0,5\cdot4\sqrt{3}+10\sqrt{3}-\dfrac{2}{3}\cdot2\sqrt{3}\)

\(=2\sqrt{3}-2\sqrt{3}+10\sqrt{3}-\dfrac{4}{3}\sqrt{3}\)

\(=10\sqrt{3}-\dfrac{4}{3}\sqrt{3}=\dfrac{26}{3}\sqrt{3}\)

b: \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}+\dfrac{3}{3+\sqrt{6}}\)

\(=\dfrac{\sqrt{3}\cdot3\sqrt{3}-2\sqrt{3}}{\sqrt{2}\left(3\sqrt{3}-2\right)}+\dfrac{3\left(3-\sqrt{6}\right)}{9-6}\)

\(=\dfrac{\sqrt{3}\left(3\sqrt{3}-2\right)}{\sqrt{2}\left(3\sqrt{3}-2\right)}+3-\sqrt{6}\)

\(=\dfrac{\sqrt{3}}{\sqrt{2}}+3-\sqrt{6}=3-\dfrac{\sqrt{6}}{2}\)

c: \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

=\(\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{24-2\cdot2\sqrt{6}\cdot3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)

Bài 2:

a: loading...

b: Phương trình hoành độ giao điểm là:

\(3x+2=-x-4\)

=>4x=-6

=>x=-3/2

Thay x=-3/2 vào y=-x-4, ta được:

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c: Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=-1\\b\ne-4\end{matrix}\right.\)

Vậy: (d2): y=-x+b

Thay x=-2 và y=5 vào (d2), ta được:

\(b-\left(-2\right)=5\)

=>b+2=5

=>b=5-2=3

Vậy: (d2): y=-x+3

huy tạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 20:29

a: Ta có: \(3\sqrt{5a}-\sqrt{20a}+\sqrt{45a}\)

\(=3\sqrt{5a}-2\sqrt{5a}+3\sqrt{5a}\)

\(=4\sqrt{5a}\)

b: Ta có: \(\sqrt{160a^2}+\dfrac{1}{2}\sqrt{40a^2}-3\sqrt{90a^2}\)

\(=4a\sqrt{10}+\dfrac{1}{2}\cdot2a\sqrt{10}-3\cdot3a\sqrt{10}\)

\(=-4a\sqrt{10}\)

c: Ta có: \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}\)

\(=\left|x-1\right|-\left|x-2\right|\)

WHY.
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 11:53

a: \(\sqrt{5\left(1-a\right)^2}\)

\(=\sqrt{5\left(a-1\right)^2}\)

\(=\sqrt{5}\cdot\sqrt{\left(a-1\right)^2}\)

\(=\sqrt{5}\left|a-1\right|\)

\(=\sqrt{5}\left(a-1\right)\)(do a>1 nên a-1>0)

b: \(\sqrt{\dfrac{9\left|a^2+2a+1\right|}{144}}\)

\(=\sqrt{\dfrac{9}{144}\cdot\left|a^2+2a+1\right|}\)

\(=\sqrt{\dfrac{1}{16}\cdot\left|\left(a+1\right)^2\right|}\)

\(=\sqrt{\dfrac{1}{16}}\cdot\sqrt{\left|\left(a+1\right)^2\right|}\)

\(=\dfrac{1}{4}\cdot\left(a+1\right)^2\)

c: 

ĐKXĐ: x<>5

Sửa đề:\(\dfrac{2}{x-5}\cdot\sqrt{\dfrac{x^2-10x+25}{64}}\)

\(=\dfrac{2}{x-5}\cdot\sqrt{\dfrac{\left(x-5\right)^2}{64}}\)

\(=\dfrac{2}{x-5}\cdot\dfrac{\sqrt{\left(x-5\right)^2}}{\sqrt{64}}\)

\(=\dfrac{2}{x-5}\cdot\dfrac{\left|x-5\right|}{8}\)

\(=\pm\dfrac{1}{4}\)

d: \(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\cdot\sqrt{x}-\sqrt{x}\cdot1}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\)

Nhi •-•
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 21:19

3:

a: \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)

b: \(\dfrac{x}{y}\cdot\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}\cdot\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)

2:

a: 2căn 7=căn 28

3căn 2=căn 18

mà 28>18

nên 2*căn 7>3*căn 2

b: 5=2+3

mà 3>căn 2

nên 2+3>2+căn 2

=>5>2+căn 2

Võ Việt Hoàng
31 tháng 7 2023 lúc 7:48

1) a) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\)

\(=\sqrt{49.2}-\sqrt{36.2}+0,5\sqrt{4.2}\)

\(=7\sqrt{2}-6\sqrt{2}+0,5.2\sqrt{2}\)

\(=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49}\)

\(=3\sqrt{a}-4\sqrt{a}+7=7-\sqrt{a}\)

2. a) \(2\sqrt{7}=\sqrt{4.7}=\sqrt{28}\)

\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

Mà \(\sqrt{28}>\sqrt{18}\Rightarrow2\sqrt{7}>3\sqrt{2}\)

b) \(5=2+3=2+\sqrt{9}\)

Vì \(\sqrt{9}>\sqrt{2}\Rightarrow2+\sqrt{9}>2+\sqrt{2}\Rightarrow5>2+\sqrt{2}\)

3. a) \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\)

b) \(\dfrac{x}{y}.\sqrt{\dfrac{y}{x}}=\sqrt{\dfrac{x^2}{y^2}.\dfrac{y}{x}}=\sqrt{\dfrac{x}{y}}=\dfrac{\sqrt{xy}}{y}\)

Khanh
Xem chi tiết
nthv_.
19 tháng 11 2021 lúc 20:05

\(1,A=\dfrac{2x+1-x}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\left(x-\sqrt{x}-2\right)\\ A=\dfrac{\left(x+1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{\left(x+1\right)\left(\sqrt{x}-2\right)}{x-\sqrt{x}+1}\\ 2,\Leftrightarrow\left\{{}\begin{matrix}2a-b=1\\a-b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=-3\end{matrix}\right.\Leftrightarrow y=-x-3\)

Nguyễn Thị Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 20:35

Sửa đề: \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{x-9}\)

\(=\dfrac{x+3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)

\(=\dfrac{9\sqrt{x}-9}{x-9}\)