Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Văn Hoàng Lâm
Xem chi tiết
Lê Văn Hoàng Lâm
4 tháng 10 2021 lúc 19:29

help me plss

 

Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:19

Bài 2: 

\(\dfrac{x^4-x^3+3x^2-x+a}{x^2-x+2}\)

\(=\dfrac{x^4-x^3+2x^2+x^2-x+2+a-2}{x^2-x+2}\)

\(=x^2+1+\dfrac{a-2}{x^2-x+2}\)

Để A chia hết cho B thì a-2=0

hay a=2

 

nguyễn học
Xem chi tiết
Huỳnh Thị Thanh Hằng
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 9 2021 lúc 10:31

Bài 1:

a) \(A=-\left(2x-5\right)^2+6\left|2x-5\right|+4=-\left[\left(2x-5\right)^2-6\left|2x-5\right|+9\right]+13=-\left(\left|2x-5\right|-3\right)^2+13\le13\)

\(maxA=13\Leftrightarrow\) \(\left[{}\begin{matrix}2x-5=3\\2x-5=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\end{matrix}\right.\)

b) \(B=-x^2-y^2+2x-6y+9=-\left(x^2-2x+1\right)-\left(y^2+6y+9\right)+19=-\left(x-1\right)^2-\left(y+3\right)^2+19\le19\)

\(maxC=19\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

Bài 2:

\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=4\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

Tử Nguyệt Hàn
30 tháng 9 2021 lúc 10:01

bài 2
\(A=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=2.2\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(A=\left(4x^2+4xy+4y^2\right)+\left(-3x^2-6xy-3y^2\right)\)
\(A=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)

Nguyễn Khôi Nguyên (^人^...
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 17:25

Bài 1:

\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)

Bài 2:

\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)

Bài 3:

\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)

Nguyễn Khôi Nguyên (^人^...
7 tháng 11 2021 lúc 17:30

thk you very much UwU

cô gái cá tính
Xem chi tiết
Nguyễn Minh Quang
12 tháng 8 2021 lúc 15:27

a. ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\times\left(-6\right)=13\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1^3-3\times\left(-6\right)\times1=19\)

\(x^5+y^5=\left(x+y\right)\left[x^4-x^3y+x^2y^2-xy^3+y^4\right]\)

\(=\left(x+y\right)\left[\left(x^2+y^2\right)^2-x^2y^2-xy\left(x^2+y^2\right)\right]=1.\left(13^2-\left(-6\right)^2-\left(-6\right).13\right)=211\)

b.\(x^2+y^2=\left(x-y\right)^2+2xy=1+2\times6=13\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=1^3+6.3.1=19\)

\(x^5-y^5=\left(x-y\right)\left[\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\right]\)

\(=\left(x-y\right)\left[\left(x^2+y^2\right)^2-x^2y^2+xy\left(x^2+y^2\right)\right]=1.\left(13^2-6^2+6.13\right)=211\)

Khách vãng lai đã xóa
Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 8:46

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

Nguyễn Thiên Kỳ
Xem chi tiết
Nguyen van an
8 tháng 8 2017 lúc 15:27

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

Nguyen van an
8 tháng 8 2017 lúc 15:28

sai con khi

Yen Nhi
2 tháng 7 2021 lúc 10:23

\(1.\)

\(a)\)

\(x^2+y^2\)

\(=\left(x+y\right)^2-2xy\)

\(=a^2-2b\)

\(b)\)

\(x^3+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=a[\left(x+y\right)^2-3xy]\)

\(=a\left(a^2-3b\right)\)

\(=a^3-3ab\)

\(c)\)

\(x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+2b^2\)

\(d)\)

\(x^5+y^5\)

\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)

\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)

\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)

\(=a^5-5a^3b+5ab^2\)

Khách vãng lai đã xóa
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:37

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

Nguyễn Đăng Nhân
Xem chi tiết
Nguyễn Ngọc lâm
16 tháng 9 2023 lúc 20:19

khó thế

Mai Khánh Linh
16 tháng 9 2023 lúc 20:29

P = x(x - y) - x + y2(x - y) - y2 + 5

P = x - x + y- y2 + 5

P = 5
 

Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015

Q = 5 - 2015

Q = -2010

khanhhuyen6a5
Xem chi tiết
Nhã Doanh
26 tháng 5 2018 lúc 17:09

Khai triển rồi thu gọn

Phạm Ngọc Nam
19 tháng 9 2019 lúc 21:09

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải