A= ( 2m - 1 ; m +3)
B= ( - 4, 5 )
Tìm m để a) A giao B ≠∅
b) A giao B = ∅
Cho A = {x ∈ R|x - 2m - 1 ≥ 0} B = {x ∈ R| x² - (2m + 1)x + 2m ≤ 0 Tìm m để A ∩ B khác ∅ Tìm m để A \ B = A
dùng công thức \(\dfrac{2m}{a\left(a+m\right)\left(a+2m\right)}=\dfrac{1}{a\left(a+m\right)}-\dfrac{1}{\left(a+m\right)\left(a+2m\right)}\)để chứng tỏ rằng:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)
\(\Rightarrow2A< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)
dùng công thức \(\dfrac{2m}{a\left(a+m\right)\left(a+2m\right)}=\dfrac{1}{a\left(a+m\right)}-\dfrac{1}{\left(a+m\right)\left(a+2m\right)}\)để chứng tỏ rằng:
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
Tìm m để a giao b bằng rỗng, biết: A=[2m-1; 2m+1], B=[-1; 5)
Lời giải:
Để $A\cap B=\varnothing$ thì:
\(\left[\begin{matrix} 2m+1<-1\\ 2m-1\geq 5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m<-1\\ m\geq 3\end{matrix}\right.\)
Tìm để 2 bất phương trình tương đương :
a) (2m-1)x+3-2m>0(1); (2m+1)x+2-2m>0(2)
b) 2mx-m+4>0(1); (m-2)x-2m+1<0(2)
\(A=\sqrt{m^2+2m+1}+\sqrt{m^2-2m+1}.A_{min}=?\)
Lời giải:
$A=\sqrt{(m+1)^2}+\sqrt{(m-1)^2}=|m+1|+|m-1|$
$=|m+1|+|1-m|\geq |m+1+1-m|=2$
Vậy $A_{\min}=2$. Giá trị này đạt tại $(m+1)(1-m)\geq 0$
$\Leftrightarrow -1\leq m\leq 1$
\(A=\sqrt{m^2+2m+1}+\sqrt{m^2-2m+1}=\sqrt{\left(m+1\right)^2}+\sqrt{\left(m-1\right)^2}=\left|m+1\right|+\left|m-1\right|=\left|m+1\right|+\left|1-m\right|\ge\left|m+1+1-m\right|=2\)
\(minA=2\Leftrightarrow\left(m+1\right)\left(1-m\right)\ge0\Leftrightarrow1-m^2\ge0\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)
Định m để:
a) Hai đường thẳng (d): y=2x-1 +2m và (d'): y=-x-2m cắt nhau tại 1 điểm có hoành độ dương
b) Hai đường thẳng (D1): mx+y=2m và (D2): (2m+1)x+my=2m^2 + m -1 cắt nhau tại 1 điểm trên trục tung. Tìm điểm đó
giai va bien luan phuong trinh:
a)(2m-1)x-3m+(m+2)x
b)2(m-1)x-m(x-1)=2m+3
c)(2m-1)x+(3m+2)x=5m+1
d)(m.n+2)x+m=2n+(n+2m)x
Cho A=[m+1;m+3]A=[m+1;m+3] và B=(2m−1;2m)B=(2m−1;2m) . Số giá trị nguyên của mm để A∩B≠∅A∩B≠∅ là
Để A giao B khác rỗng thì \(\left[{}\begin{matrix}m+1< 2m\\m+3>2m-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-m< -1\\-m>-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>1\\m< 4\end{matrix}\right.\)
Vậy: Có 2 giá trị nguyên thỏa mãn
cho 2 biểu thức A=5/2m+1 và B=4/2m-1. hãy tìm giá trị m để a)2A+3B=0 b)AB=A+B