Cho tam giác ABC, vẽ AH vuông góc với BC ( H thuộc BC). Chứng minh góc BAH = góc C ; góc HAC = góc B
Cho tam giác ABC vuông tại A, AH vuông góc với BC (H thuộc BC). Chứng minh góc C=góc BAH
Tam giác ABC vuông tại A \(\Rightarrow\) góc B + góc C = 90 độ
Tam giác AHB vuông tại H \(\Rightarrow\) góc B + góc BAH = 90 độ
Suy ra góc C = góc BAH (cùng phụ góc B)
Cho tam giác ABC, kẻ AH vuông góc với BC (H thuộc BC). Trên mặt phẳng bờ AC không chứa điểm B vẽ Cx // AB; trên tia Cx lấy điểm D sao cho CD = AB a) Biết góc ABC = 60 độ, tính góc BAH b) Chứng minh tam giác ABC=tam giác CDA c) Chứng minh AD vuông góc AH
a) Xét \(\Delta ABH\)có:
\(\widehat{BAH}+\widehat{ABH}+\widehat{AHB}=180^o\)( đl tổng 3 góc của 1 tam giác)
hay \(\widehat{BAH}+60^o+90^o=180^o\)
\(\Rightarrow\widehat{BAH}=30^o\)
b) Xét \(\Delta ABC\)và \(\Delta CDA\)có:
\(AB=CD\left(gt\right)\)
\(\widehat{BAC}=\widehat{ACD}\)( 2 góc slt)
\(AC\)cạnh chung
\(\Rightarrow\Delta ABC=\Delta CDA\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{CAD}\)( 2 góc tương ứng)
c) Ta có: \(\widehat{ACB}=\widehat{CAD}\)( c/mt)
Mà 2 góc này nằm ở vị trí slt
\(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{AHB}=\widehat{HAD}\)(2 góc slt)
Mà \(\widehat{AHB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{HAD}=90^o\)
Hay nói cách AD vuông góc AH( đpcm)
học tốt!!
cho tam giác ABC vuông tại A. vẽ AH vuông góc với BC tại H. Chứng minh rằng góc BAH= góc C
∆AHB vuông tại H
⇒∠BAH + ∠ABH = ∠BAH + ∠ABC = 90⁰ (1)
∆ABC vuông tại A
⇒ ∠ABC + ∠ACB = 90⁰ (2)
Từ (1) và (2) ⇒ ∠BAH = ∠ACB
Hay ∠BAH = ∠C
Cho tam giác ABC có AB = AC = 10cm, BC =12cm. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh: HB = HC và góc BAH= góc CAH
b) Tính độ dài AH ?
Có vẽ hình
a) Xét tam giác AHB và AHC có:
AC = BC (gt)
\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)
=> AHB = AHC (ch-gv)
=> HB = HC (cạnh tương ứng)
\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)
b) Ta có HB = HC (cmt)
Mặt khác AH là cạnh góc vuông của tam giác vuông AHC
Áp dụng định lý Pitago ta có:
\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)
\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)
cho tam giác ABC vuông tại A, vẽ tian phân giác BD của góc ABC ( D thuộc A ), Trên BC lấy điểm E sao cho BE = AB, nối D với E
a) chứng minh tam giác ABD = tam giác EBD
b) chứng minh góc BED là góc vuông
c) Vẽ AH vuông góc với BC ( H thuộc BC ). Chúng minh góc BAH = góc ACH và AH song song với DE
d) Chúng minh DB là đường trung trực của AE
không cần vẽ hình nha
a) xét ▲ABD VÀ▲ EBD có
BD là cạnh chung
góc ABD= góc DBE
AB= BE
nên Δ ABD=Δ EBD (c.g.c)
b) vì Δ ABD=Δ EBD (cmt)
→ góc BED= góc BAC (2 góc tương ứng)
c) ta có:
AH VUÔNG VỚI BC
→ góc AHE = 90o (1)
góc bed = 90o (cmt) (2)
từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)
Cho tam giác ABC cân tại A. Đường cao AH (H thuộc BC).
a) Chứng minh H là trung điểm của BC và góc BAH = góc HAC.
b) Kẻ HM vuông góc với AB tại M và HN vuông góc với AC tại N. Chứng minh tam giác AMN cân tại A.
c) Vẽ P sao cho H là trung điểm đoạn NP. Chứng minh AH, MN, DP đồng quy.
d) MP cắt BC tại K, NK cắt MH tại D. Chứng minh AH, MN, DP đồng quy.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC và góc BAH=góc CAH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
Cho tam giác ABC, kẻ AH vuông góc với BC (H thuộc BC). Trên mặt phẳng bờ AC không chứa điểm B vẽ Cx // AB; trên tia Cx lấy điểm D sao cho CD = AB
a) Biết góc ABC = 60 độ, tính góc BAH
b) Chứng minh tam giác ABC=tam giác CDA
c) Chứng minh AD vuông góc AH
Cho tam giác ABC, kẻ AH vuông góc với BC (H thuộc BC). Trên mặt phẳng bờ AC không chứa điểm B vẽ Cx // AB; trên tia Cx lấy điểm D sao cho CD = AB
a) Biết góc ABC = 60 độ, tính góc BAH
b) Chứng minh tam giác ABC=tam giác CDA
c) Chứng minh AD vuông góc AH
a) Vì \(AH\perp BC\Rightarrow\widehat{AHB}=90^o\)\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
b) Do \(AB//CD\Rightarrow\widehat{BAC}=\widehat{ACD}\)(2 góc so le trong)
\(\Rightarrow\Delta ABC=\Delta CDA\left(cgc\right)\)vì\(\hept{\begin{cases}AB=CD\\\widehat{BAC}=\widehat{ACD}\\ACchung\end{cases}}\)
c) Vì \(\Delta ABC=\Delta CDA\Rightarrow\widehat{ACB}=\widehat{CAD}\)(2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong của 2 đường thẳng AD và BC\(\Rightarrow AD//BC\)
Ta có \(AD//BC,AH\perp BC\Rightarrow AD\perp AH\)
Cho tam giác ABC, kẻ AH vuông góc với BC (H thuộc BC). Trên mặt phẳng bờ AC không chứa điểm B vẽ Cx // AB; trên tia Cx lấy điểm D sao cho CD = AB
a) Biết góc ABC = 60 độ, tính góc BAH
b) Chứng minh tam giác ABC=tam giác CDA
c) Chứng minh AD vuông góc AH
mình thấy mọi người toàn hỏi hình học nhỉ