Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Tấn Phúc
Xem chi tiết
Leo Messi
Xem chi tiết
Thắng Nguyễn
15 tháng 6 2017 lúc 23:01

nhân cả tử và mẫu với 3 rồi làm tương tự bài dưới

Leo Messi
16 tháng 6 2017 lúc 19:56

lam cu the ra duoc ko ak

Phạm Tuấn Đạt
18 tháng 6 2017 lúc 20:52

\(B=\frac{9a}{3ab+9a+27}+\frac{9b}{3bc+9b+27}+\frac{9c}{9ac+9c+27}\)

Làm tương tự bài dưới

Leo Messi
Xem chi tiết
Thắng Nguyễn
18 tháng 6 2017 lúc 21:44

bn đã hỏi rất nhiều bài dạng này r` chả nhẽ mấy lần trc mk làm bn chép lại r` vứt só à 

Thảo Nguyên Xanh
18 tháng 6 2017 lúc 21:55

\(\frac{3a}{ab+3a+9}=\frac{3abc}{ab^2c+3abc+9bc}=\frac{3.27}{27b+3.27+9bc}\)

=\(\frac{81}{9\left[3b+9+bc\right]}\)1

\(\frac{3c}{ac+3c+9}=\frac{3cb}{abc+3bc+9b}=\frac{3bc}{3\left[9+bc+3b\right]}\)2

từ 1,2  ta có B=\(\frac{9}{3b+9+bc}+\frac{bc}{9+bc+3b}+\frac{3b}{bc+3b+9}\)

=1

Ngô Đức Chính
Xem chi tiết
Uyên
24 tháng 7 2018 lúc 8:21

Bài 1: 

Thấy đường cao là a thì cạnh <=> là 1,5a (a > 0)

\(S_{\text{tam giác}}:\frac{1}{2}.a.1,5a=\frac{3}{4}a^2=27\)

\(\Rightarrow a^2=36\Rightarrow a=36\)

1,5a = 9

=> Cạnh tam giác là 9 cm

      Đường cao <=> 6 cm

Bài 2:

\(2a=3b;5b=7c\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{b}{14};\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng t/c dãy tỉ số = nhau, ta có:

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a+5c-7b}{3.21+5.14+7.10}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=2.21=42\\\frac{b}{14}=2\Rightarrow b=2.14=28\\\frac{c}{10}=2\Rightarrow c=2.10=20\end{cases}}\)

Vậy:...

Phạm Thị Huyền Trang
Xem chi tiết
HD Film
13 tháng 8 2020 lúc 11:14

\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)

\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)

\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)

\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)

\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)

Vậy VT = VP, đẳng thức được chứng minh

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

VUX NA
Xem chi tiết
黃旭熙.
4 tháng 9 2021 lúc 19:54

黃旭熙.
4 tháng 9 2021 lúc 19:55

Ủa bị lỗi hả:v? undefined

dilan
Xem chi tiết
Linh Ngô
Xem chi tiết
lê thị hương giang
22 tháng 11 2017 lúc 14:42

\(3a^2+3b^2=10ab\)

\(\Rightarrow3a^2-10ab+3b^2=0\)

\(\Rightarrow3a^2-ab-9ab+3b^2=0\)

\(\Rightarrow\left(3a^2-ab\right)-\left(9ab-3b^2\right)=0\)

\(\Rightarrow a\left(3a-b\right)-3b\left(3a-b\right)=0\)

\(\Rightarrow\left(3a-b\right)\left(a-3b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3a-b=0\\a-3b=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=-3a\\b=\dfrac{a}{3}\end{matrix}\right.\)

Với \(b=-3a,\)có :

\(P=\dfrac{-3a-a}{-3a+a}=\dfrac{-4a}{-2a}=2\)

Với \(b=\dfrac{a}{3},\)có :

\(P=\dfrac{\dfrac{a}{3}-a}{\dfrac{a}{3}+a}=\dfrac{\dfrac{a}{3}-\dfrac{3a}{3}}{\dfrac{a}{3}+\dfrac{3a}{3}}=\dfrac{-\dfrac{2a}{3}}{\dfrac{4a}{3}}=-\dfrac{2a}{3}.\dfrac{3}{4a}=-\dfrac{1}{2}\)

( Nếu sai thì cho mk xin lỗi nha bn , tại mk ko chắc lắm )