Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Nhật Linh
Xem chi tiết
Ly Ly
Xem chi tiết
Hiện thực khốc liệt :D
30 tháng 6 2021 lúc 16:35

`a)sqrt{(sqrt7-4)^2}+sqrt7`

`=|sqrt7-4|+sqrt7`

`=4-sqrt7+sqrt7=4`

`b)\sqrt{81a}-sqrt{144a}+sqrt{36a}(a>=0)`

`=9sqrta-12sqrta+6sqrta=3sqrta`

Nguyễn Lê Phước Thịnh
30 tháng 6 2021 lúc 16:41

a) Ta có: \(\sqrt{\left(\sqrt{7}-4\right)^2}+\sqrt{7}\)

\(=4-\sqrt{7}+\sqrt{7}\)

=4

b) Ta có: \(\sqrt{81a}-\sqrt{144a}+\sqrt{36a}\)

\(=9\sqrt{a}-12\sqrt{a}+6\sqrt{a}\)

\(=3\sqrt{a}\)

NT Ánh
Xem chi tiết
Trần Việt Linh
14 tháng 8 2016 lúc 19:38

a) \(\sqrt{\frac{2a^2b^4}{50}}=\sqrt{\frac{a^2b^4}{25}}=\frac{\sqrt{a^2b^4}}{\sqrt{25}}=\frac{ab^2}{5}\)

b) \(\frac{\sqrt{2ab^2}}{\sqrt{162}}=\sqrt{\frac{2ab^2}{162}}=\sqrt{\frac{ab^2}{81}}=\frac{\sqrt{ab^2}}{\sqrt{81}}=\frac{b\sqrt{a}}{9}\)

titanic
Xem chi tiết
alibaba nguyễn
26 tháng 4 2017 lúc 15:55

\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)

\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)

\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)

\(=\frac{2a}{\sqrt{a-4}}\) 

Nguyễn Đăng Hiếu
12 tháng 5 2017 lúc 15:01

bài này không phải của lớp 7

nguyễn quỳnh lưu
Xem chi tiết
Lê Thanh Nhã Vi
Xem chi tiết
tranhang
Xem chi tiết
Chu Bá Đạt
11 tháng 4 2017 lúc 17:56

Khó quá ; đề ở đâu vậy bạn ........

Lee Je Yoon
Xem chi tiết
Trần Việt Linh
23 tháng 7 2016 lúc 21:53

\(P=\left(\frac{a+\sqrt{a^2-b^2}}{a-\sqrt{a^2-b^2}}-\frac{a-\sqrt{a^2-b^2}}{a+\sqrt{a^2-b^2}}\right):\frac{4\sqrt{a^4-a^2b^2}}{b^2}\)

    \(=\left[\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}\right)-\left(a-\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{\left(a-\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}\right)}\right]:\frac{4\sqrt{a^2\left(a^2-b^2\right)}}{b^2}\)

     \(=\left[\frac{\left(a+\sqrt{a^2-b^2}\right)^2-\left(a-\sqrt{a^2-b^2}\right)}{a^2-\left(a^2-b^2\right)}\right]:\frac{4a\sqrt{a^2-b^2}}{b^2}\)

    \(=\frac{\left(a+\sqrt{a^2-b^2}+a-\sqrt{a^2-b^2}\right)\left(a+\sqrt{a^2-b^2}-a+\sqrt{a^2-b^2}\right)}{b^2}\cdot\frac{b^2}{4a\sqrt{a^2-b^2}}\)

    \(=\frac{2a\cdot2\sqrt{a^2-b^2}}{b^2}\cdot\frac{b^2}{4a\sqrt{a^2-b^2}}\)

    \(=1\)

Hiếu Tạ
Xem chi tiết
Edogawa Conan
23 tháng 7 2020 lúc 16:35

\(B=\frac{2}{x^2-y^2}\cdot\sqrt{\frac{9\left(x^2+2xy+y^2\right)}{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\sqrt{\frac{9\left(x+y\right)^2}{4}}\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{\sqrt{9\left(x+y\right)^2}}{\sqrt{4}}=\frac{2}{\left(x-y\right)\left(x+y\right)}\cdot\frac{3\left(x+y\right)}{2}\)(vì x > -y <=> x + y >  0)

\(=\frac{3}{x-y}\)

\(C=\sqrt{\frac{2a}{3}}.\sqrt{\frac{3a}{8}}=\sqrt{\frac{2a}{3}\cdot\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì a > = 0)

\(D=\frac{1}{a-b}\cdot\sqrt{a^4\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\left(a-b\right)=a^2\)(a > b > 0)

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 7 2020 lúc 20:11

câu cuối điều kiện là a>b

\(\frac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}=\frac{a^2\left|a-b\right|}{a-b}=\frac{a^2\left(a-b\right)}{a-b}=a^2\) (vì a>b)

Khách vãng lai đã xóa