Câu 2. Cho tam giác DEF vuông tại E, Biết DF = 39 cm, EF = 36 cm. Gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho M D = MN.
a)Tính đồ dài DE;
b)Chứng minh rằng: DE =FN và DE//FN.
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD. Chứng minh NE // DF và NF // DE
Cho tam giác DEF vuông tại D, gọi M là trung điểm của EF. Trên tia đối của tia MD lấy điểm N sao cho MN = MD.
a)Chứng minh ED//FH và DM vuông góc EF
b)Trên mặt phẳng bờ là DF
a: Sửa đề: Cm ED//FN và FN vuông góc với FD
Xét tứ giác DENF có
M là trung điểm chung của DN và EF
góc EDF=90 độ
Do đó: DENF là hình chữ nhật
=>ED//FN và FN vuông góc với FD
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
( Giúp mình câu D thôi cũng đc nhé )
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
tham khảo
a: EF=5cm
b: Xét ΔMDF vuông tại D và ΔMDC vuông tại D có
MD chung
FD=CD
Do đó:ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó;ΔECF cân tại E
Cho ΔDEF vuông tại D biết cạnh DE= 3cm, DF= 4cm. Trên tia đối của tia DF lấy điểm C sao cho DF=DC
a) Tính EF
b) Lấy điểm M trên DE sao cho MD=1cm. CM ΔMDF=ΔMDC
c) CM ΔECF cân
d) Gọi giao điểm của FM với EC là N. CM FN là đường trung tuyến của ΔCEF
a: EF=5cm
b: Xét ΔMDF vuông ạti D và ΔMDC vuông tại D có
MD chung
DF=DC
DO đo: ΔMDF=ΔMDC
c: Xét ΔECF có
ED là đường cao
ED là đường trung tuyến
Do đó: ΔECF cân tại E
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF vuông tại E (ED < EF), tia phân giác của góc D cắt EF tại M. Trên tia đối của tia MD lấy điểm N sao cho DM = MN, từ điểm N vẽ đường thẳng vuông góc với EF tại I và cắt DF tại điểm P.
a) Chứng minh tam giác EDM = TAM GIÁC INM.
b) Chứng minh DP = NP.
a: Xét ΔMED vuông tại E và ΔMIN vuôngtại I có
MD=MN
góc EMD=góc IMN
=>ΔMED=ΔMIN
b: ΔMED=ΔMIN
=>góc MDE=góc MNI=góc MDP
=>DP=NP
Cho tam giác DEF vuông tại D có DE= 3cm, EF= 5cm
a) Tính độ dài cạnh DE và so sánh các góc của tam giác DEF
b) Trên tia đối của tia DE lấy điểm K sao cho D là trung điểm của đoạn thẳng EK. Chứng minh tam giác EKF cân
c) Gọi I là trung điểm của cạnh EF, đường thẳng KI cắt cạnh DF tại G. Tính GF
d) Đường trung trực d của đoạn thẳng DF cắt đường thẳng KF tại M. Chứng minh ba điểm E, G, M thẳng hàng
a)Xét\(\Delta DEF\)có:\(EF^2=DE^2+DF^2\)(Định lý Py-ta-go)
hay\(5^2=3^2+DF^2\)
\(\Rightarrow DF^2=5^2-3^2=25-9=16\)
\(\Rightarrow DF=\sqrt{16}=4\left(cm\right)\)
Ta có:\(DE=3cm\)
\(DF=4cm\)
\(EF=5cm\)
\(\Rightarrow DE< DF< EF\)hay\(3< 4< 5\)
b)Xét\(\Delta DEF\)và\(\Delta DKF\)có:
\(DE=DK\)(\(D\)là trung điểm của\(EK\))
\(\widehat{EDF}=\widehat{KDF}\left(=90^o\right)\)
\(DF\)là cạnh chung
Do đó:\(\Delta DEF=\Delta DKF\)(c-g-c)
\(\Rightarrow EF=KF\)(2 cạnh t/ứ)
Xét\(\Delta KEF\)có:\(EF=KF\left(cmt\right)\)
Do đó:\(\Delta KEF\)cân tại\(F\)(Định nghĩa\(\Delta\)cân)
c)Ta có:\(DF\)cắt\(EK\)tại\(D\)là trung điểm của\(EK\Rightarrow DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)cắt\(EF\)tại\(I\)là trung điểm của\(EF\Rightarrow KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
Ta lại có:\(DF\)cắt\(KI\)tại\(G\)
mà\(DF\)là đg trung tuyến xuất phát từ đỉnh\(F\)của\(\Delta KEF\)
\(KI\)là đg trung tuyến xuất phát từ đỉnh\(K\)của\(\Delta KEF\)
\(\Rightarrow G\)là trọng tâm của\(\Delta KEF\)
\(\Rightarrow GF=\frac{2}{3}DF\)(Định lí về TC của 3 đg trung tuyến của 1\(\Delta\))
\(=\frac{2}{3}.4=\frac{8}{3}\approx2,7\left(cm\right)\)
Vậy\(GF\approx2,7cm\)
Cho tam giác DEF có DE<DF. Gọi M là trung điểm của EF. Trên tia đối của tia DM lấy điểm K sao cho MD=MK. a/ Chứng minh tam giác DEM= tam giác KFM.Từ đó chứng minh DE//KF. b/ Kẻ DH vuông góc với EF. Trên tia DH lấy điểm P sao cho HD=HP. Chứng minh EF là tia phân giác của góc DEP
Vẽ hình giúp mình với nhé mình cảm ơn nhiều
a) Xét △DEM và △KFM có
DM=KM(giả thiết)
góc DME=góc KMF(2 góc đối đỉnh)
EM=MF(Vì M là trung điểm của EF)
=>△DEM =△KFM(c-g-c)
=> góc MDE=góc MKF (2 góc tương ứng)
hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF
=>DE//KF
b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ
Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có
HD=HP
HE là cạnh chung
=> △DHE= △PHE(2 cạnh góc vuông)
=> góc DEM=góc PEM
=> EH là tia phân giác của góc DEP
hay EF là tia phân giác của góc DEP
vậy EF là tia phân giác của góc DEP
cho tam giác DEF cân tại D. Đường cao DH(H thuộc EF). Trên tia đối EF, lấy điểm M sao cho EM=ED. Kẻ EI vuông góc MD(I thuộc MD).
a)CM tg HDM đồng dạng tg IEM
b)Tia IH cắt tia DF tại N. CM FH=FN
d)ĐK của tg DEF để H là trung điểm của IN