Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Mỹ Hạnh
Xem chi tiết
Sỹ Tiền
Xem chi tiết
meme
24 tháng 8 2023 lúc 19:17

Để tính các biểu thức trên, ta sẽ áp dụng quy tắc nhân đa thức.

a) 2xy(3x+1) = 6x^2y + 2xy

b) -6x^2y(4x-5) = -24x^3y + 30x^2y

c) -3x^2(4x^2y-6xy) = -12x^4y + 18x^3y

d) 1/2xy^2(2x+3) = xy^2 + 3/2xy^2

e) 8x^2y^2(1/4xy-1/2x^2) = 2xy - 4x^2y^2

f) 5x(x^2+3x+1) = 5x^3 + 15x^2 + 5x

g) -1/2x^2y(2xy+6) = -x^3y - 3x^2y

Nguyễn Quý Cảnh
Xem chi tiết
Yen Nhi
29 tháng 3 2022 lúc 22:32

`Answer:`

undefined

Khách vãng lai đã xóa

\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)

\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)

\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)

\(=-4x^2y+3xy^2+5\)

\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)

\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)

\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)

\(=-6x^2y+0,5xy^2\)

\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)

\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)

\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)

\(=10xy^2+-4xy\)

\(=10xy^2-4xy\)

\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)

\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)

\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)

\(=-3xy+4y^2\)

\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)

\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)

\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)

\(=-1\)

Khách vãng lai đã xóa
Quang Huy Điền
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 11 2019 lúc 14:43

Lấy 3 lần pt trên trừ pt dưới:

\(4x^2+4xy+y^2-6x-3y+2=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2-\left(2x+y-1\right)=0\)

\(\Leftrightarrow\left(2x+y-1\right)\left(2x+y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=1-2x\\y=2-2x\end{matrix}\right.\)

Thay vào 1 trong 2 pt ban đầu là xong

Khách vãng lai đã xóa
20.NGUYỄN DUY NGUYÊN 7E
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2022 lúc 15:33

\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)

\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)

Nguyễn Ngọc Đại
Xem chi tiết
Xyz OLM
20 tháng 5 2021 lúc 11:04

P = x3 - 2x2y - 3x2 - 2xy + 4y2 + 3x - 5

= (x3 - 2x2y - 3x2) - (2xy - 4y2 - 6y) + (3x - 6y - 9) + 4

= x2(x - 2y - 3) - 2y(x - 2y - 3) + 3(x - 2y-  3) + 4

= (x - 2y - 3)(x2 - 2y + 3) + 4 

= 4 (Vì x - 2y - 3 = 0)

Khách vãng lai đã xóa
Trịnh Hải Yến
Xem chi tiết
Girl 2k3
Xem chi tiết
Laura
26 tháng 10 2019 lúc 19:45

\(a)xy+3x-2y=11\)

\(\Leftrightarrow xy+3x-2y-6=5\)

\(\Leftrightarrow x\left(y+3\right)-2\left(y+3\right)=5\)

\(\Leftrightarrow\left(y+3\right)\left(x-2\right)=5\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-1\\x-2=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-4\\x=-3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=1\\x-2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\\x=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=-5\\x-2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-8\\x=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y+3=5\\x-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:05

\(b)2x^2-2xy+x-y=12\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)=12\)

\(\Leftrightarrow\left(x-y\right)\left(2x+1\right)=12\)

\(\Rightarrow\left(x-y\right);\left(2x+1\right)\inƯ\left(12\right)\)

\(\RightarrowƯ\left(12\right)\in\left\{-1;1;-2;2;-3;3;-4;4;-6;6;-12;12\right\}\)

Vì 2x+1 luôn lẻ

\(\Rightarrow2x+1\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-1\\x-y=-12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=1\\x-y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=-3\\x-y=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=3\\x-y=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Khách vãng lai đã xóa
Laura
26 tháng 10 2019 lúc 20:23

\(c)2xy-10y-x=13\)

\(\Leftrightarrow x\left(2y-1\right)-2y.5+5=18\)

\(\Leftrightarrow x\left(2y-1\right)-5\left(2y-1\right)=18\)

\(\Leftrightarrow\left(2y-1\right)\left(x-5\right)=18\)

\(\Leftrightarrow2y-1;x-5\inƯ\left(18\right)\)

\(\RightarrowƯ\left(18\right)\in\left\{-1;1;-2;2;-3;3;-6;6;-9;9;-18;18\right\}\)

Vì 2y-1  luôn lẻ

=>2y-1 thuộc {-1;1;-3;3;-9;9}

=> Làm  tương tự nhé

\(e)xy-2y^2+8y-3x=13\)

\(\Leftrightarrow xy-2y^2+2y+6y-3x-6=7\)

\(\Leftrightarrow y\left(x-2y+2\right)+3\left(-x+2y-2\right)=7\)

\(\Leftrightarrow y\left(x-2y+2\right)-3\left(x-2y+2\right)=7\)

\(\Leftrightarrow\left(x-2y+2\right)\left(y-3\right)=7\)

Tự khai triển như các câu trên.

Mình đg bận nên ko lm đc hết câu.

Khách vãng lai đã xóa
Duy …
Xem chi tiết
Nguyễn Huy Tú
13 tháng 2 2022 lúc 10:20

\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)

Thay x = 2 ; y = 1 ta được 

\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)

Thái Đào
Xem chi tiết