Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2019 lúc 14:06

Đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 11 2019 lúc 13:36

Đáp án D

Có S A B C = 1 2 . a . a = a 2 2  

 

 Vậy V S . A B C = 1 3 S A . S A B C = a 3 3 6

Bông hồng BN
Xem chi tiết
Forever_Alone
22 tháng 4 2017 lúc 19:10

tk ủng hộ với

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2017 lúc 4:59

Đáp án: C

Gọi H là trung điểm BC ⇒ A ' H ⊥ ( A B C )

S ∆ A B C = 1 2 A B . A C = a 2 3 2

Kết luận  V = a 3 . a 2 3 2 = 3 a 3 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2018 lúc 11:09

Đáp án B

Okie
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:10

a: \(\widehat{ACB}=40^0\)

Thảo Vi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 15:40

1.

\(\overrightarrow{AB}=\left(2;-6\right)\Rightarrow AB=2\sqrt{10}\) \(\Rightarrow BC=AB.cosB=\sqrt{10}\)

Gọi \(C\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(x-1;y-2\right)\\\overrightarrow{BC}=\left(x-3;y+4\right)\end{matrix}\right.\)

Tam giác ABC vuông tại C và có \(BC=\sqrt{10}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{BC}=0\\BC^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-3\right)+\left(y-2\right)\left(y+4\right)=0\\\left(x-3\right)^2+\left(y+4\right)^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-4x+2y-5=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3y-10=0\\x^2+y^2-6x+8y+15=0\end{matrix}\right.\)

\(\Rightarrow\left(3y+10\right)^2+y^2-6\left(3y+10\right)+8y+15=0\)

\(\Leftrightarrow2y^2+10y+11=0\)

\(\Leftrightarrow y=...\)

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 16:00

2.

Kẻ \(EF\perp BC\)

\(S_{ABC}=9S_{BDE}\Rightarrow AD.BC=9EF.BD\Rightarrow\dfrac{EF}{AD}=\dfrac{BC}{9BD}\)

Talet: \(\dfrac{EF}{AD}=\dfrac{BF}{BD}=\dfrac{BC}{9BD}\Rightarrow BC=9BF\)

Hệ thức lượng: \(BE^2=BF.BC=9BF^2\Rightarrow BE=3BF\)

\(\Rightarrow cosB=\dfrac{BF}{BE}=\dfrac{1}{3}\)

Gọi R là bán kính đường tròn ngoại tiếp ABC và \(r\) là bán kính đường tròn ngoại tiếp BDE

\(sinB=\sqrt{1-\left(\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow r=\dfrac{DE}{2sinB}=\dfrac{3}{2}\) (định lý sin tam giác BDE)

Dễ dàng chứng minh 2 tam giác ABC và BDE đồng dạng (chung góc B và \(\widehat{A}=\widehat{BDE}\) vì cùng bù \(\widehat{CDE}\))

Mà \(S_{ABC}=9S_{BDE}\Rightarrow\) 2 tam giác đồng dạng tỉ số \(k=\sqrt{9}=3\)

\(\Rightarrow R=3r=\dfrac{9}{2}\)

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 16:01

Hình vẽ bài số 2:

undefined

Halloween
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 2 2021 lúc 19:29

a) Xét ΔABC có 

BA<BC(gt)

mà góc đối diện với cạnh BA là \(\widehat{ACB}\)

và góc đối diện với cạnh BC là \(\widehat{BAC}\)

nên \(\widehat{BAC}>\widehat{ACB}\)(Quan hệ giữa cạnh và góc đối diện trong tam giác)

b) Xét ΔABH vuông tại H và ΔAMH vuông tại H có

HB=HM(gt)

AH chung

Do đó: ΔABH=ΔAMH(hai cạnh góc vuông)

Suy ra: BA=MA(hai cạnh tương ứng)

Xét ΔBAM có BA=MA(cmt)

nên ΔBAM cân tại A(Định nghĩa tam giác cân)

Xét ΔBAM cân tại A có \(\widehat{B}=60^0\)(gt)

nên ΔBAM đều(Dấu hiệu nhận biết tam giác đều)

Tinas
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2022 lúc 21:34

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔBAE đều

TV Cuber
6 tháng 4 2022 lúc 21:40

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

\(\stackrel\frown{ABD}=\stackrel\frown{EBD}\)

\(BD\left(chung\right)\)

=> ΔABD=ΔEBD(c.h-gn)

:Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE

=> ΔBAE cân tại B

mà \(\widehat{ABE}=60^o\)

=> ΔBAE đều(t/c tam giác cân)

ERROR
6 tháng 4 2022 lúc 21:37

TK
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

ˆABD=ˆEBDABD^=EBD^

Do đó: ΔABD=ΔEBD

b: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

mà ˆABE=600ABE^=600

nên ΔBAE đều

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2018 lúc 5:24

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Trong ΔABC ta có:

∠A + ∠B + ∠C = 180o(tổng ba góc trong tam giác)

⇒∠B = 180o - (∠A +∠C )

⇒x = 180o - (60o + 50o) = 70o

(∠B1) =(∠B2 ) = (1/2 )∠B (vì BD là tia phân giác)

⇒ ∠B1 = ∠B2 = 70o : 2 = 35o

Trong ΔBCD ta có ∠(ADB) là góc ngoài tại đỉnh D

⇒ ∠(ADB) = ∠(B1 ) + ∠C (tính chất góc ngoài tam giác)

Nên ∠(ADB) = 35º + 50º = 85º

+) Do ∠(ADB) + ∠(BDC) = 180o(hai góc kề bù)

⇒∠(BDC) = 180o-∠(ADB) = 180o - 85o = 95o