Cho tam giác ABC vuông tại A có AB = 9 cm, AC = 12 cm và đường cao AH
a) Tính độ dài AH
b) Kẻ HD⊥AB; HE⊥AC. Chứng minh AD.AB= AE.AC
c) Gọi M lần lượt là trung điểm của AC và HC. Chứng minh hệ thức HB.HC=4MN2
Cho tam giác ABC vuông tại A, đường cao AH. a, Chứng minh tam giác AHB đồng dạng với tam giác CAB b, Cho AB=12 cm, AC=16 cm. Tính độ dài AH? c, Kẻ DH vuông góc với AC tại D. Gọi M là trung điểm của AB; CM cắt HD tại I. Chứng minh I là trung điểm của HD
Cho tam giác abc có ạ=90 độ ab 6cm ac 8cm đường cao ah h thuộc Bc a) cm abc đồng dạng hba và tính độ dài bc, b)từ h kẻ HD vuông ab he vuông ác cm ah mũ 2= ad.ab
Cho tam giác ABC vuông tại A có AB = 3 cm AC = 4 cm , đường cao AH a, CM : tam giác ABC đồng dạng tam giác HBA từ đó suy ra ab² = BC . BH b , tính BC và BH c, Kẻ HE vuông góc AB , HF vuông góc AC Chứng minh AH . BH = BE.AC và tính độ dài BE
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC vuông tại A có AB=9 cm,AC = 12 cm tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC (E thuộc AC)
a,Tính độ dài BD và CD
b, kẻ đường cao AH. Hãy chứng minh tam giác ABH đồng dạng tam giác CDE
a: \(CB=\sqrt{9^2+12^2}=15\left(cm\right)\)
ADlà phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7
=>BD=45/7cm; CD=60/7cm
b: Xét ΔABH vuông tại H và ΔCDE vuông tại E có
góc HAB=góc ECD
=>ΔABH đồng dạng với ΔCDE
Cho tam giác ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH ( H thuộc BC ).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC từ đó suy ra AB. AC = AH. BC
b) Tính độ dài các đoạn thẳng BC, Ah
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Cho tam giác abc vuông tại a ( ab<ac) có đường cao ah (h thuộc bc)
a) CM tam giác ABC đồng dạng tam giác HBA
b)Tính độ dài bc,bh khi ab=6cm,ac=8cm
c)kẻ hd vuông góc ab tại d. CM ah^2=dh.ac
d) gọi m là trung điểm của ac. kẻ mk vuông góc bc tại k. CM BK^2=AB^2+AC^2
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Bài 1:
AH=12cm
AC=20cm
\(\widehat{ABC}=37^0\)
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
cho tam giác ABC vuông tại A,có AB=12 cm ;AC=16 cm kẻ đường cao AH (H thuộc BC)
chứng minh tam giác HBA đồng dạng với tam giác ABC
tính độ dài các cạnh BC,AH
trên tia HC lấy điểm D sao cho HD=HA.Đường vuông góc với BC tại D cắt AC tại E .Gọi M là trung điểm của BE,tia AM cắt BC tại G. chứng minh GB trên BC =HD trên AH+HC
Cho tam giác vuông tại A , AB cm 6 , AC cm 8 . Vẽ đường cao AH . a. Chứng minh AHB CAB ∽ . b. Tính độ dài AH và HB ? c. Lấy điểm D bất kỳ trên cạnh AC ( D khác A và C ). Kẻ đường thẳng vuông góc với HD tại H cắt AB tại E . Chứng minh: BHE AHD ∽ và BAH EDH .