a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
Cho tam giác ABC vuông tại A , đường cao AH ,biết: ad= 18cm, ac= 24cm.
a) Chứng minh : tam giác ABC đồng dạng tam giác HBA. từ đó suy ra AB^2 = BC.HB.
b) Tính độ dài các đoạn thẳng BC,AH,BH và CH.
c) Kẻ đường phân giác góc A cắt BC tại K. TÍnh tỉ số diện tích của 2 tam giác AKB và AKC
Giúp mik nha
Bài 3 : Cho tam giác ABC vuông tai A, AB =15 cm; AC = 20 cm . Kẻ đường cao AH a/ Chứng minh : ABC HBA từ đó suy ra : AB2 = BC. BH b/ Tính BH và CH.
Cho tam giác ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH ( H thuộc BC ).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC từ đó suy ra AB. AC = AH. BC
b) Tính độ dài các đoạn thẳng BC, Ah
Cho tam giác abc vuông tại a ( ab<ac) có đường cao ah (h thuộc bc)
a) CM tam giác ABC đồng dạng tam giác HBA
b)Tính độ dài bc,bh khi ab=6cm,ac=8cm
c)kẻ hd vuông góc ab tại d. CM ah^2=dh.ac
d) gọi m là trung điểm của ac. kẻ mk vuông góc bc tại k. CM BK^2=AB^2+AC^2
Cho tam giác ABC vuông tại A có đường cao AH
a) Chứng minh: Tam giác ABC và tam giác HBA đồng dạng rồi suy ra AB^2 = BH . BC
b) CM: Tam giác AHB đồng dạng với tam giác CHA đồng dạng rồi suy ra AH^2 = BH . CH
c) Trên tia đối của tia AC lấy điểm M sao cho AM < AC , vẽ AF vuông góc với BM tại F. Chứng minh góc BFH = góc BAH
Cho tam giác vuông tại A có đường cao AH ( H thuộc BC )
a) Cm : tam giác ABH đồng dạng tam giác CBA ,từ đó suy ra AB2 =BH .BC
b) Cm AH2 = BH .CH
c) CHo AB = 12 cm , AC =16 cm . Tính BC ,AH
d) Từ H vẽ HE vuông góc AC . Gọi M là giao điểm của AH và BE , I là giao điểm của CM và HE . Chứng minh I là trung điểm HE
cho tam giác ABC vuông tại a đường cao AH a) chứng minh tam giác ABC ~ tam giác HBA từ đó suy ra AB^2=BH .BC b) cho BH=4cm CH=9cm tính AH,AB c) gọi F điểm tùy ý trên AC, đường thẳng qua H vuông góc HF cắt cạnh AB tại E chứng minh AE . CH=AH . FC d) xác định vị trí của F trên AC để đoạn FE có độ dài ngắn nhất
cho tam giác ABC vuông tại A , AB = 15cm , AC = 20cm . kẻ đường cao AH
a, chứng minh tam giác ABC đồng dạng tam giác HBA : từ đó suy ra AB^2 = BC . BH
b, tính BH và CH
c, kẻ HM vuông góc với AB và HN vuông góc với AC , chứng minh : AM.AB = AN.AC , từ đó chứng minh tam giác AMN đồng dạng với tam giác ACB
d, tính tỉ số diện tích của tam giác AMN và tam giác ABC từ đó tính diện tích tam giác AMN
AI LÀM ĐÚNG + NHANH NHẤT MK TẶNG 5 TICK