Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Trương Mạnh Tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2023 lúc 19:57

a: Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
BD=CE

góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=CK

b: Tham khảo:

loading...

Phạm Khánh Vân
Xem chi tiết
Nguyễn Minh Anh
27 tháng 1 2022 lúc 22:25

TK

undefined

undefined

Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2023 lúc 8:43

Xét tứ giác ADBC có

M la trung điểm chung của AB và DC

nên ADBC là hình bình hành

=>góc ADB=góc ACB

Xét ΔABC có

MN//BC

AM/AB=1/2

=>N là trung điểm của AC

Xét ΔNBC và ΔNEA có

góc NCB=góc NAE

NC=NA

góc BNC=góc ENA

=>ΔNBC=ΔNEA

=>NB=NE

=>AECB là hình bình hành

=>CE=AB=AC=BD và góc AEC=góc ABC

=>góc AEC=góc ADB

Gọi giao của BD và CE là K

Xét ΔKDE có góc KDE=góc KED

nên ΔKDE cân tại K

=>KD=KE

=>KB=KC

=>K nằm trên trung trực của BC

mà AH là trung trực của BC

nên A,H,K thẳng hàng

Phí Lê Đức Linh
Xem chi tiết
Jenny
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2021 lúc 13:27

a) Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)

Ta có: AD=AB+BD(B nằm giữa A và D)

AE=AC+CE(C nằm giữa A và E)

mà AB=AC(ΔABC cân tại A)

và BD=CE(gt)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

Ta có: ΔADE cân tại A(cmt)

nên \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{ADE}\)

mà \(\widehat{ABC}\) và \(\widehat{ADE}\) là hai góc ở vị trí đồng vị

nên BC//DE(Dấu hiệu nhận biết hai đường thẳng song song)

b) Ta có: \(\widehat{DBM}=\widehat{ABC}\)(hai góc đối đỉnh)

\(\widehat{ECN}=\widehat{ACB}\)(hai góc đối đỉnh)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{DBM}=\widehat{ECN}\)

Xét ΔDBM vuông tại M và ΔECN vuông tại N có

BD=CE(gt)

\(\widehat{DBM}=\widehat{ECN}\)(cmt)

Do đó: ΔDBM=ΔECN(cạnh huyền-góc nhọn)

nên DM=EN(hai cạnh tương ứng)

c) Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

BM=CN(ΔDBM=ΔECN)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACN(c-g-c)

nên AM=AN(hai cạnh tương ứng)

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Pham Thi Phuong Thao
Xem chi tiết
Lenn0xx
Xem chi tiết
binn2011
Xem chi tiết
Nhok Diệt Rồng
2 tháng 2 2019 lúc 8:37

B=(2.4.10+4.6.8+14.16.20)/(3.6.15+6.9.12+21.24.30)

IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Khách vãng lai đã xóa
NGUYEN PHAN QUYNH TRAN
Xem chi tiết
Tâm Trần Huy
7 tháng 2 2017 lúc 9:53

câu c là tam giác ABC cân là đề cho r