cho tam giác DEF vuông tại D; EM là tia phân giác của góc E (M thuộc DF). Qua M kẻ MK vuông góc với EF ( K thuộc EF). a) Chứng minh: MD=MK b) Gọi P là giao điểm của MK và DE. Chứng minh EM vuông góc PF và PF song song với DK
Cho tam giác ABC vuông tại A, BC=7, AC=6. Hãy giải tam giác vuông ABC?
Cho tam giác DEF vuông tại D, DE=7, Ê=40 độ. Hãy giải tam giác vuông DEF?
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
Cho tam giác ABC vuông tại A có BC=2AB=2a. Gọi D là trung điểm của BC. Vẽ tam giác DEF vuông tại D có E thuộc AC, F thuộc AB.
a, Tính số đo các góc tam giác DEF
b, Tính diện tích tam giác DEF theo DE
c, Khi diện tích tam giác DEF nhỏ nhất, tính độ dài cung EF của đường tròn ngoại tiếp tam giác DEF
Cho tam giác ABC vuông tại A có BC=2AB=2a. Gọi D là trung điểm của BC. Vẽ tam giác DEF vuông tại D có E thuộc AC, F thuộc AB.
a, Tính số đo các góc tam giác DEF
b, Tính diện tích tam giác DEF theo DE
c, Khi diện tích tam giác DEF nhỏ nhất, tính độ dài cung EF của đường tròn ngoại tiếp tam giác DEF
1) cho tam giác DEF có A,B thứ tự là trung điểm của DE và DF. CMR:AB//EF và AB=1/2 EF
2) cho tam giác DEF vuông tại D có A là trung điểm của EF. Chứng minh DA1/2 È
3) cho tam giác DEF có B là tủng điểm của EF và DB=1/2 EF. CMR tam giác DEF vuông tại D
4) Cho tam giác DEF vuông tại D có góc E =30 độ. CM DF=1/2 EF
5) Cho tam giác DEF vuông tại D có DF=1/2 EF. Chứng minh góc E =30 độ
1) Xét tam giác DEF có:
+ A là trung điểm của DE (gt).
+ B là trung điểm của DF (gt).
\(\Rightarrow\) AB là đường trung bình của tam giác DEF.
\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).
2) Xét tam giác DEF vuông tại D có:
DA là đường trung tuyến (A là trung điểm của EF).
\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).
3) Xét tam giác DEF có:
+ DB là đường trung tuyến (B là trung điểm của EF).
+ DB = \(\dfrac{1}{2}\) EF (gt).
\(\Rightarrow\) Tam giác DEF vuông tại D.
Cho tam giác DEF vuông tại D . Tia phân giác của góc DEF cắt DF tại I. TừI kẻ IH vuông góc với EF tại H. Chứng minh DI=IH
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
Các bạn giải giúp mình với:
Cho tam giác ABC vuông cân tại A. xác định tam giác DEF vuông cân tại D, nội tiếp tam giác ABC ( D,E,F lần lượt thuộc cạnh AB, BC, AC) sao cho diện tích tam giác DEF nhỏ nhất.
1. Cho tam giác OCD vuông tại O có đường cao OH. Biết CD = 24cm , .
Tính độ dài OH, OC, OD.
2. Cho tam giác DEF vuông tại D, đường cao DI. Biết , DE = 18 cm . Giải tam giác DEF và tính độ dài DI.
Bài 1:
\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)
\(DH=15\left(cm\right)\)
\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)
\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)
\(OH=3\sqrt{15}\left(cm\right)\)
Cho tam giác DEF vuông tại D có ED = 4cm góc F bằng 60 độ. Giải tam giác vuông
Ta có \(\sin\widehat{F}=\dfrac{ED}{EF}=\sin60^0=\dfrac{\sqrt{3}}{2}\Leftrightarrow EF=4\cdot\dfrac{2}{\sqrt{3}}=\dfrac{8\sqrt{3}}{3}\left(cm\right)\\ DF=\sqrt{EF^2-DE^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\left(pytago\right)\)
Cho Tam giác DEF vuông tại D(DE
cho tam giác ABC vuông cân tại A. Dựng tam giác DEF vuông cân tại D có D thuộc AB, E thuộc AC, F thuộc BC. chứng minh: \(_{S_{DEF}=\frac{1}{5}S_{ABC}}\)