Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH
: Cho tam giác DEF vuông tại D. Tia phân giác của góc DEF cắt cạnh DF tại I. Kẻ IH vuông EF
a) Chứng minh: tam giác DEI = HEI và DI = IH
b) Gọi K là giao điểm của DE và IH. Chứng minh: tam giác IDK = IHF
c) Chứng minh tam giác EKF cân và DH // KF
d) Tìm điều kiện của tam giác DEF để D là trung điểm của EK.
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Cho Δ DEF có DE= DF.Tia phân giác của ∠D cắt EF tại I.
a) chứng minh Δ DEF=Δ DFI.
b)Kẻ IH vuông góc với DE(H ϵ DE),IK vuông góc với DF(K ϵ DF).Chứng minh IH=IK
c)Biết ∠D=3∠E. Tính số đo các góc của tam giác DEF
Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ). a. Chứng minh: DFI = HFI b. DFH là tam giác gì? Vì sao?. c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI. Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE. a) Chứng minh cân b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của . c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK. d) Chứng minh ba đường thẳng AM, BH, CK đồng quy
Cho tam giác DEF vuông tại D, EK là tia phân giác của góc DEF ( K thuộc DF ). Trên tia EF lấy điểm H sao cho EH=ED.
a) Chứng minh tam giác EDK=tam giác EHK, từ đó chứng minh HK vuông góc với EF
b) Từ H kẻ đường thẳng vuông góc với DF, nó cắt DF tại I. Chứng minh HI // ED
Cho tam giác DEF, vuông tại E, tia phân giác DH. Qua H kẻ HI vuông góc với DF tại I. Gọi K là giao điểm DE và IH. Chứng minh DH vuông góc KF.
Cho tam giác DEF vuông tại D
Kẻ phân giác AI của DEF (I thuộc DF)
Trên EF lấy điểm H Sao cho ED = EH
a) Chứng minh rằng: tam giác DIE = tam giác HIE
Rồi suy ra IH vuông góc với EF
b) Tia HI cắt tia ED tại K
Chứng minh rằng: tam giác DIK = tam giác HIF
rồi suy ra IK = IF
c) Chứng minh rằng: EI vuông góc DH
cho tam giác DEF vuông tại D.Tia phân giác của góc DEF cắt DF tại A từ A kẻ AH vuông góc với EF tại H và AH cắt ED tại K chứng minh AD bằng AH
Cho tam giác đều DEF. Tia phân giác của góc E cắt cạnh DF tại M. Qua D kẻ đường thẳng vuông góc với DE, đường thẳng này cắt tia EM tại N và cắt tia EF tại P. Chứng minh rằng
a/ Tam giác DNF cân
b/ NF vuông góc với EF
c/ Tam giác DEP cân