: Cho tam giác DEF vuông tại D. Tia phân giác của góc DEF cắt cạnh DF tại I. Kẻ IH vuông EF
a) Chứng minh: tam giác DEI = HEI và DI = IH
b) Gọi K là giao điểm của DE và IH. Chứng minh: tam giác IDK = IHF
c) Chứng minh tam giác EKF cân và DH // KF
d) Tìm điều kiện của tam giác DEF để D là trung điểm của EK.
a: Xét ΔDEI vuông tại D và ΔHEI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó: ΔDEI=ΔHEI
Suy ra: ID=IH
b: Xét ΔIDK vuông tại D và ΔIHF vuông tại H có
ID=IH
\(\widehat{IDK}=\widehat{IHF}\)
Do đó: ΔIDK=ΔIHF
c: Ta có: ΔIDK=ΔIHF
nên DK=HF
Ta có: ED+DK=EK
EH+HF=EF
mà ED=EH
và DK=HF
nên EK=EF
hay ΔEKF cân tại E
Xét ΔEKF có
ED/DK=EH/HF
nên DH//KF