Cho tam giác ABC vuông tại A, biết AC = 3cm; BC = 5cm. Tính diện tích tam giác.
Làm hộ mình với, cảm ơn nhìu!!!
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm.Tìm AC
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
cho tam giác abc vuông tại a biết độ dài hai cạnh góc vuông là AB=3cm,AC=4cm tính chu vi của tam giác ABC
vì tam giác abc vuông tại a, ta có
bc2 = ab2 + ac2
bc2 = 32 + 42
bc = căn của 25
bc = 5
chu vi tam giác abc là:
3 + 4 + 5 = 12(cm)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. a) Tính độ dài các đoạn thẳng AH, CH. b) Vẽ đường thẳng d vuông góc với AC tại C, cắt AH tại D. Kẻ BE vuông góc với CD tại E. Tính góc DAC? Diện tích tam giác BCD? Cho tam giác ABC vuông tại A, đường cao AH . Biết AB =3cm,4C=4cm. a) Tinh độ dài các đoạn thẳng AHẠCH . b) Vẽ đường thẳng d vuông góc với AC tại C, ả cắt AH tại D.Kẻ BE vuông góc với CD tại E. Tỉnh góc D4C ? Diện tích tam giác BCD? c) Chứng minh: 4C* = ABCD. d) Từ H kẻ đường thẳng vuông góc với AC tại I cắt BD tại K. So sánh HI và HK?
Cho tam giác ABC vuông tại A biết AB =3cm AC=4cm tính AH HB
xét tam giác ABC vuông tại A đường cao AH , áp dụng đinh lí Pytago ta có
\(AB^2+AC^2=BC^2< =>BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\)
ta có: \(AH.BC=AB.AC\)(hệ thức lượng tam giác vuông)
=>
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}=2,4cm\)
Cho tam giác ABC vuông tại A. Gọi G là trọng tâm tâm giác ABC Biết AB=3cm, AC=4cm. TÍNH Ag
Hình em tự vẽ ra nhé.
Áp dụng đl pytago vào tam giác vuông ABC có:
AB^2 + AC^2 = BC^2
-- > BC = 5 (cm)
Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)
Vì G là trọng tâm tâm giác ABC, ta lại có:
\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A biết AB=3cm, AC=4cm, Gọi AH là đường cao tính S tam giác AHC
xét tam giác ABC vuông tại A . áp dụng Pytago
=>\(BC=\sqrt{AB^2+AC^2}\)
\(BC=\sqrt{3^2+4^2}=5cm\)
có \(AC^2=CH.BC\)(hệ thức lượng)
\(=>CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=3,2cm\)
có tam giác AHC vuông tại H
=>\(AH=\sqrt{AC^2-CH^2}=\sqrt{4^2-3,2^2}=2,4cm\)
=>\(S\left(\Delta AHC\right)=\dfrac{AH.HC}{2}=\dfrac{ }{ }\)\(\dfrac{2,4.3,2}{2}=3,84cm^2\)
cho tam giác ABC vuông tại A, biết AB=3cm; AC=4cm. Kẻ đường cao AH và trung tuyến AM. CM tam giác AHB và tam giác ABC đồng dạng
Xét \(\Delta ABC\&\Delta ABH\) ta có:
\(\widehat{A}=\widehat{B}=90^o\left(gt\right)\\ \widehat{B}=\widehat{B}\\\Rightarrow \Delta ABC\&\sim ABH\)
Xét ∆AHB và ∆CBA có:
∠AHB = ∠CAB = 90⁰
∠B chung
⇒ ∆AHB ∽ ∆CBA (g-g)
Xét ΔABC&ΔABH ta có:
góc A= góc B= 90 độ (gt)
góc B= góc B
⇒ΔABC&∼ABH