Cho ABC vuông tại A có đường cao AH.
a. AB= 15cm, AC= 20cm. tính BH; AH
b. AC=20cm, BH= 4cm tính BC
Cho tam giác ABC vuông tại A có AH là đường cao, Biết AB=15cm , AC=20cm . Tính độ dài BC, BH, AH?
Áp dụng Pytago \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\end{matrix}\right.\)
bài 1 cho tam giác ABC vuông tại A, có AB = 15 cm ;AC = 20cm và đường cao AH. Tính độ dài đoạn thẳng BC và AH
bài 2 cho tam giác ABC vuông tại AH,có AB =15cm,AH=12cm.Tính BH,BC,CH,AC
bài 3 cho tứ giác lồi ABCD có AC vuông góc vs BD tại O.Chứng minh AB2 + CD2 = AD2+ BC2.
giải giúp mình trong hôm nay với
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
1. Cho tam giác ABC vuông tại A(AB<AC) có đường cao AH. Biết BC = 25cm, AH = 12cm. Tính AB, AC, BH, CH
2. Cho tam giác ABC vuồng tại A, đường cao AH. Biết AB = 15cm, HC = 16cm. Tính AC, BC, AH, BH
Đề 1:
Cho tam giác ABC vuông tại A có AB = 30cm, đường cao AH = 24cm.
a) Tính BH, BC, AC.
b) Đường thẳng vuông góc với AB tại B cắt tia AH tại D. Tính BD
Đề 2:
Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 15cm, BH = 9cm.
a) Tính AC, BC, và đường cao AH.
b) Gọi M là trung điểm của BC, tính diện tích của tam giác AHM.
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
Cho tam giác ABC vuông tại A và đường cao AH. Biết A = 90 độ, AB = 15cm, AC = 20cm.
a) TÍnh cạnh BC.
b) Tính độ dài của AH, BH và HC
à thanks mình xin lỗi nhé !
a, Xét tam giác HAC và tam giác ABC ta có
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1)
\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3)
Xét tam giác HAB và tam giác ABC ta có :
^AHB = ^BAC = 900
^B _ chung
Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)
Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB
b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )
\(\Rightarrow HA=\frac{15.20}{25}=12\)cm
Kéo dài MN, cắt AC tại I. Do đó N là giao điểm của MI và AH (vì \(N\in AH\)) và \(I\in AC\)
Xét \(\Delta HAB\)có:
\(MB=MH\)(giả thiết).
\(NA=NH\)(giả thiết).
\(\Rightarrow MN\)là đường trung bình của \(\Delta HAB\).
\(\Rightarrow MN//AB\)(tính chất).
\(\Rightarrow MI//AB\).
Mà \(AB\perp AC\)(vì \(\Delta ABC\)vuông tại A).
\(\Rightarrow MI\perp AC\)
Xét \(\Delta MAC\)có:
\(MI\perp AC\left(I\in AC\right)\)(chứng minh trên).
\(AH\perp MC\)(vì \(AH\perp BC\)).
Và N la giao điểm của MI và AH.
\(\Rightarrow N\)là trực tâm của \(\Delta MAC\)
\(\Rightarrow CN\perp AM\)(điều phải chứng minh).
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
cho tam giác ABC vuông tại A đường cao AH gọi E,F là trung điểm của AH và BH cho AB=15cm; AC=20cm. Chứng minh BF.EC = FA.AE
cho tam giác ABC vuông tại A có AB=9cm, BC=15cm, AH là đường cao. Tính BH, CH,AC và AH
Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=7,2\left(cm\right)\\BH=5,4\left(cm\right)\\CH=9,6\left(cm\right)\end{matrix}\right.\)
cho tam giác abc vuông tại a đường cao ah , biết ab=15cm , ac=20cm a) cm tam giác hba đồng dạng tam giác abc . tam giác hac đồng dạng tam giác abc . b)tính ah,bh,ch . c) gọi bd là tia phân giác của góc abc . tính ad,dc . d)gọi e,f là chân đường vuông góc kẻ từ h xuống ad và ac . tứ giác aehf là hình gì . e)chứng minh ae.ab=af.ac
Vẽ dùm mình cái hình và phần e
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)
\(\Leftrightarrow AH=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=15^2-12^2=81\)
hay BH=9(cm)
Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay CH=16(cm)
c) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{15}=\dfrac{CD}{25}=\dfrac{AD+CD}{15+25}=\dfrac{20}{40}=\dfrac{1}{2}\)
Do đó: AD=7,5cm; CD=12,5cm