Cho tứ giác ABCD có \(\widehat{A}\)+ \(\widehat{C}\)= 180 độ ; AB < AC ,AC là tia phân giác của góc BAD .Chứng minh rằng BC = DC.
Cho tứ giác ABCD, có \(\widehat{B}\) = \(\widehat{D}\)
\(\widehat{B}\) + \(\widehat{C}\) < 180 độ
AB giao CD tại H
Chứng minh AC^2 = CD.CH - AB.AH
Cho tứ giác ABCD có AB=BC, \(\widehat{A}+\widehat{C}=180\) độ. CM:DB là phân giác của \(\widehat{ADC}\)
Cho tứ giác ABCD biết:
\(\widehat{B}+\widehat{C}=200^o;\widehat{B}+\widehat{D}=180^o;\widehat{C}+\widehat{D}=120^o\)
Tính các góc của tứ giác ABCD
góc C-góc D=200-180=20 độ
góc C+góc D=120 độ
=>góc C=(20+120)/2=70 độ và góc D=120-70=50 độ
góc B=200-70=130 độ
góc A=180-70=110 độ
Cho tứ giác ABCD. Các tia phân giác \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\)cắt nhau tạo thành một tứ giá. Chứng minh tứ giác đó có tổng hai góc đối bằng 1800.
Cho tứ giác ABCD có DA = AB = BC và \(\widehat{A}+\widehat{C}=180^o.\) Tứ giác ABCD là tứ giác đặc biệt nào? Vì sao?
mình đang cần gấp
Vẽ \(BM⊥AD\)tại M và \(BN⊥CD\)tại N
Dễ thấy \(\Delta MAB=\Delta NCB\)( cạnh huyền - góc nhọn )
\(\Rightarrow\)BM = BN , \(\widehat{MAB}=\widehat{BCN}\)
\(\Rightarrow\) BD là tia phân giác của góc ABC
Xét \(\Delta ABD\) cân tại A \(\Rightarrow\)\(\widehat{ABD}=\widehat{ADB}\)
ta có: \(\widehat{ABD}=\widehat{BDC}\)\(\Rightarrow\) AB // CD
Xét tứ giác ABCD có: AB // CD và \(\widehat{ADC}=\widehat{BCD}\left(=\widehat{MAB}\right)\)
nên là hình thang cân
Tứ giác có 3 cạnh bằng nhau là hình thoi hoặc hình vuông
Hai hình này đều có tổng của 2 góc kề nhau bằng 180o
Cho tứ giác ABCD có \(\widehat{A}+\widehat{C}=180\) .Có AD cắt BC tại E và AB cắt CD tại F.Phân giác trong góc E và góc F cắt nhau tại I.Chứng minh \(\widehat{EIF}\)= 90 độ
Bạn vào thống kê hỏi đáp của mình để xem lời giải nhé !
\(\widehat{EIF}=\frac{\widehat{A}+\widehat{C}}{2}=\frac{180^o}{2}=90^o\) (ĐPCM)
Cho tứ giác lồi ABCD, có \(\widehat{B}+\widehat{D}\)= 180 độ, CB = CD. Chứng minh AC là tia phân giác của \(\widehat{BAD}\)
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc
Cho tứ giác ABCD có AD=AB=BC. Biết \(\widehat{A}+\widehat{C}=180\) . chứng minh :
a, DB là phân giác góc D
b, ABCD là hình thang cân
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
Cho tứ giác ABCD, biết: \(\widehat{B}=\widehat{A}+20^o;\widehat{C}=3\widehat{A};\widehat{D}-\widehat{C}=20^o\).
a) Tính các góc của tứ giác ABCD
b) Tứ giác ABCD có phải hình thang không? Vì sao?