Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao văn anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2023 lúc 7:34

a:\(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)

AH=4*3/5=2,4cm

b: ΔCAD cân tại C

mà CH là đường cao

nên CH là phân giác của góc ACD

Xét ΔCAB và ΔCDB có

CA=CD

góc ACB=góc DCB

CB chung

Do dó: ΔCAB=ΔCDB

=>góc CDB=90 độ

=>BD là tiếp tuyến của (C)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 9 2018 lúc 7:15

*Tam giác ABC có ∠(BAC) = 90o

Vì CA là đường cao xuất phát từ đỉnh C; BA là đường cao xuất phát từ đỉnh B

Và hai đường cao này cắt nhau tại A nên A là trực tâm của ΔABC.

*Tam giác AHB có ∠(AHB) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, BH là đường cao xuất phát từ đỉnh B và giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHB.

*Tam giác AHC có ∠(AHC) = 90o

Vì AH là đường cao xuất phát từ đỉnh A, CH là đường cao xuất phát từ đỉnh C và giao điểm của hai đường này là H.

Vậy H là trực tâm của ΔAHC.

NGUYỄN XUÂN SƠN
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 14:46

2: Xét ΔCAD và ΔCEA có

góc C chung

góc CAD=góc CEA

=>ΔCAD đồng dạng với ΔCEA

=>CA/CE=CD/CA

=>CA^2=CE*CD

Huyền Nguyễn
Xem chi tiết
Huyền Nguyễn
25 tháng 7 2023 lúc 15:11

giúp e vs

 

Huyền Nguyễn
Xem chi tiết
Huyền Nguyễn
24 tháng 7 2023 lúc 11:56

giúp mik vs ;-;

 

Trương Quang Thiện
Xem chi tiết
Cô Hoàng Huyền
6 tháng 8 2018 lúc 17:14

Xét tam giác vuông AHC và tam giác vuông AED có:

AE = AH

\(\widehat{HAC}=\widehat{EAD}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta AHC=\Delta AED\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow AC=AD\)

Xét tam giác BDC có BA là đường cao đồng thời trung tuyến nên nó là tam giác cân. Vậy thì BA cũng là tia phân giác góc B.

Gọi H' là chân đường vuông góc hạ từ A xuống BD.

Ta thấy ngay \(\Delta H'BA=\Delta HBA\)   (Cạnh huyền góc nhọn)

Vậy thì AH' = AH

Suy ra BD là tiếp tuyến của đường tròn tâm A, bán kính AH.

Ngọc anh Vũ Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2021 lúc 12:35

Vì ΔABC vuông tại A nội tiếp \(\left(O\right)\) nên O là trung điểm của BC

hay R=OB=OC

Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=7.5^2-4.5^2=36\)

hay HB=6cm

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{7.5^2}{6}=9.375\left(cm\right)\)

\(\Leftrightarrow R=4.6875\left(cm\right)\)

Trương Đình Thắng
Xem chi tiết
Vũ Hạ Nguyên
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
Gia Huy
6 tháng 7 2023 lúc 15:27

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)