Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tú Trần
Xem chi tiết
Bùi Minh Quân
Xem chi tiết
Nguyen Khanh Huyen
Xem chi tiết
ducchinhle
1 tháng 9 2018 lúc 21:35

p=a^2+b^2 (1)

p là số nguyên tố, p-5 chia hết 8 => p lẻ >=13  và a,b có 1 chẵn 1 lẻ

A=a.x^2-b.y^2 chia hết cho p, nên có thể viết  A = p(c.x^2 -d.y^2) với c,d phải nguyên

và c.p = a và d.p = b

thay (1) vào ta thấy c=a/(a^2+b^2) cần nguyên là vô lý vậy A muốn chia hết cho p <=> x và y cùng là bội số của p 

Dream Boy
2 tháng 9 2018 lúc 8:34

Đặt \(p=8k+5\left(đk:K\in N\right)\)

Vì: \(\left(ax^2\right)^{4k+2}-\left(by^2\right)^{4k+2}⋮\left(ax^2-by^2\right)\)

\(\Rightarrow a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}⋮p\)

Mà \(a^{4k+2}.x^{8k+4}-b^{4k+2}.y^{8k+4}\)\(=\left(a^{4k+2}+b^{4k+2}\right).x^{8k+4}-b^{4k+2}\)\(\left(x^{8k+4}+y^{8k+4}\right)\)

Ta lại có: \(a^{4k+2}+b^{4k+2}=\left(a^2\right)^{2k+1}+\left(b^2\right)^{2k+1}⋮p\) ; p<d nên \(x^{8k+4}+y^{8k+4}⋮p\)

Làm tiếp đi 

ミ★β❍ℜʊζ❍★彡
5 tháng 5 2020 lúc 20:53

IQ vô cực

Khách vãng lai đã xóa
Nguyễn Thế Hiếu
Xem chi tiết
Akai Haruma
5 tháng 4 2021 lúc 17:20

Lời giải:

$x^3-9y^2+9x-6y=1$

$\Leftrightarrow x^3+9x=9y^2+6y+1$

$\Leftrightarrow x(x^2+9)=(3y+1)^2$

Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$

$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$

Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau. 

$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.

 

Miu Phù thủy
Xem chi tiết
Linhhhhhh
Xem chi tiết
nam do duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2023 lúc 19:29

loading...  

Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

GamingDudex
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 1 2022 lúc 19:10

uses crt;

var a,b,k,dem,x,y:longint;

begin

clrscr;

readln(a,b,k);

dem:=0;

for x:=1 to k do 

  for y:=1 to k do 

  if ((a<=b) and (a<=x*x) and (a<=y*y*y)) then dem:=dem+1;

writeln(dem);

readln;

end.