Bài 1: Cho hàm số f(x) = ax5 + bx3 + cx có giá trị nguyên với mọi x nguyên và f(1), f(2), f(3) đạt giá trị lớn nhất khi a, b, c dương. Tìm a,b,c
Bài 2: Nếu x, y ∈ Z thỏa mãn 3x2 + x = 3y2 + y thì x - y; 2x + 2y + 1; 3x + 3y + 1 là các số chính phương
Dạ nhờ mọi người giúp dùm em bài này, em cảm ơn ạ
giải giúp mình các pt sau đây nha
1. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
2. \(\sqrt{x^2+x+1}=2x+\sqrt{x^2-x+1}\)
3. \(\sqrt[3]{x+1}+\sqrt[3]{x+3}=\sqrt[3]{x+2}\)
4. \(4x^2-x+4=3x\sqrt{x+\dfrac{1}{x}}\)
5. \(\sqrt[4]{x^2+x+1}+\sqrt[4]{x^2-x+1}=2\sqrt[4]{x}\)
6. \(4x^2-3x-4=\sqrt[3]{x^4-x^2}\)
giải nhanh giúp mình nha
thanks trước
Giải giúp mình vài hệ pt này nha
thanks nhiều
1.\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=15\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\end{matrix}\right.\)
2.\(\left\{{}\begin{matrix}\left(1-\dfrac{12}{y+3x}\right)\sqrt{x}=2\\\left(1+\dfrac{12}{y+3x}\right)\sqrt{y}=6\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}x^3+y^3=8\\x+y+2xy=2\end{matrix}\right.\)
4.\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)
5.\(\left\{{}\begin{matrix}x^3-3x=y^3-3y\\x^6+y^6=1\end{matrix}\right.\)
6.\(\left\{{}\begin{matrix}x^2-2xy+3y^2=9\\2x^2-13xy+15y^2=0\end{matrix}\right.\)
giải giúp mình một vài bài sau nha
cảm ơn nhiều nhé !
1. Tìm nghiệm nguyên dương của pt: \(2^x+57=y^2\)
2. Tìm nghiệm nguyên: \(x^2y^2-x^2-8y^2=2xy\)
3. Tìm nghiệm nguyên dương của pt: \(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
4. Tìm nghiệm nguyên của pt: \(x^3-y^3=xy+8\)
5. Tìm nghiệm nguyên của pt: \(y\left(x-1\right)=x^2+2\)
6. Tìm nghiệm nguyên dương của pt: \(xy^2+2xy-243y+x=0\)
7. (bài này là toán rời rạc nha, toán đi-rích-lê á)
Có 5 bạn học sinh trong đó có ít nhất 2 bạn đôi một quen nhau và 2 bạn đôi một không quen nhau. C/tỏ: Có thể xếp 1 bạn ngồi giữa 2 bạn không quen nhau và bạn đó quen cả 2 bạn không quen nhau đó.
Cho phương trình \(x^2-3x+m=0\) (1) (x là ẩn).
Tìm các giá trị m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1^2+1}+\sqrt{x_2^2+1}=3\sqrt{3}\).
Câu 1: Giải phương trình và hệ phương trình
a) \(\sqrt{4x^2-4x+9}=3\)
b) \(\left\{{}\begin{matrix}3x-y=5\\2y-x=0\end{matrix}\right.\)
Câu 2:
a) Cho hai đường thẳng (d\(_1\)): y = 2x - 5 và (d\(_2\)): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d\(_1\)) và (d\(_2\)) cắt nhau tại một điểm trên trục hoành Ox
b) Rút gọn biểu thức: \(P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\) với x > 0, x \(\ne\) 9, x \(\ne\) 25
giải hệ pt \(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{matrix}\right.\)
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên
a,Cho a +b =2 C/m \(B=a^5+b^5\ge2\)
b,Cho các số dường a,b,x,y t/m ĐK \(x^2+y^2=1\) và \(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{1}{a+b}\).C/m \(\dfrac{x}{\sqrt{a}}+\dfrac{\sqrt{b}}{y}\ge2\)
c,Với x,y là các số dương t/m: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=2010\) .Tính \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
d,Chứng minh A=\(A=\sqrt{1+2008^2+\dfrac{2008^2}{2009^2}}+\dfrac{2008}{2009}\) có giá trị là 1 số tự nhiên