Đường thẳng đi qua A( 0; -2) nhận n → = ( 1 ; - 2 ) làm véc tơ pháp tuyến có phương trình là:
A.x- 2y- 4=0
B . x - 2y- 4= 0
C. x-2y+ 3=0
D.2x+ y- 3= 0
Viết phương trình đường thẳng \({d_1}\):
a) Đi qua điểm \(A(2;3)\) và song song với đường thẳng \({d_2}:x + 3y + 2 = 0\)
b) Đi qua điểm \(B(4; - 1)\) và vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\)
a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n = \left( {1;3} \right)\)
\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát
\(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)
b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u = \left( {3; - 1} \right)\)
\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 1 - t\end{array} \right.\)
Cho 3 điểm A,B,C ko thẳng hàng. Biết góc BAC= 750. Kẻ đường thẳng D đi qua A và // vs BC. Kẻ đường thẳng A đi qua B và vuông góc với đường thẳng D, đường thẳng A cắt đường thẳng D tại M. Kẻ đường thẳng B đi qua C và vuông góc với đường thẳng D, B cắt D tại E. Tính góc ABM+ACE
Cho 3 điểm A,B,C ko thẳng hàng. Biết góc BAC= 750. Kẻ đường thẳng D đi qua A và // vs BC. Kẻ đường thẳng A đi qua B và vuông góc với đường thẳng D, đường thẳng A cắt đường thẳng D tại M. Kẻ đường thẳng B đi qua C và vuông góc với đường thẳng D, B cắt D tại E. Tính góc ABM+ACE
.
Có: Góc EAC + Góc BAC + Góc MAB = Góc EAM = 180 độ ( Góc EAM là góc bẹt )
=> Góc EAC + 75 độ + Góc MAB = 180 độ
=> Góc EAC + Góc MAB = 105 độ
Xét tam giác AEC có: Góc E + Góc EAC + Góc ACE = 180 độ ( định lý )
Xét tam giác AMB có: Góc M + Góc MAB + Góc ABM = 180 độ ( định lý )
=> Góc E + Góc EAC + Góc ACE + Góc M + Góc MAB + Góc ABM = 180 độ + 180 độ = 360 độ
=> ( Góc E + Góc M ) + ( Góc EAC + Góc MAB ) + ( Góc ACE + Góc ABM ) = 360 độ
=> 90 độ + 90 độ + 105 độ + ( Góc ACE + Góc ABM ) = 360 độ
=> 285 độ + ( Góc ACE + Góc ABM ) = 360 độ
=> Góc ACE + Góc ABM = 360 độ - 285 độ
=> Góc ACE + Góc ABM = 75 độ
Vậy:...
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
Bài 3: Xác định đường thẳng (d):
a) Đi qua 2 điểm A(-3; 0) và B(0; 2)
b) Đi qua 2 điểm A(0; 1) và B(-1; 0)
c) Đi qua 2 điểm A(0; -3) và B(1;- 1)
\(a,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có \(\left(d\right)\) đi qua \(A\left(-3;0\right),B\left(0;2\right)\) nên \(\left\{{}\begin{matrix}0=-3a+b\\2=0a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=2\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=\dfrac{2}{3}x+2\)
\(b,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có hệ pt \(\left\{{}\begin{matrix}1=0a+b\\0=-a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=x+1\)
a,a, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có (d)(d) đi qua A(−3;0),B(0;2)A(−3;0),B(0;2) nên {0=−3a+b2=0a+b⇔⎧⎨⎩a=23b=2{0=−3a+b2=0a+b⇔{a=23b=2
Vậy đths là (d):y=23x+2(d):y=23x+2
b,b, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có hệ pt {
Đồ thị tọa độ theo thời gian của chuyển động thẳng đều có vận tốc v khác 0 là: A. đường thẳng có phương thẳng đứng B. đường thẳng phải đi qua gốc tọa độ C. đường thẳng nằm ngang D. đường thẳng đi qua gốc tọa độ
D
<Giải thích: theo lý thuyết thì câu A và C sai. Câu B sai vì nếu mình chọn x0 khác 0 thì đồ thị hàm số đó không đi qua gốc tọa độ>
Viết phương trình tổng quát phương trình tham số của đường thẳng trong mỗi trường hợp sau:
a, Đi qua M(1;-2) có VTPT (2;3)
b, Đi qua N(0;-1) có VTCP (-2;1)
c, Đi qua 2 điểm M(1;-1), N(3;2)
d, Đi qua A(1;-2) và song song với đường thẳng 2x-3y-3=0
e, Đi qua B(2;1) và vuông góc với đường thẳng x-y+5=0
a) phương trình tổng quát của đường thẳng đi qua \(M\left(1;-2\right)\) có VTPT\(\left(2;3\right)\) là \(2\left(x-1\right)+3\left(y+2\right)=0\) \(\Leftrightarrow2x+3y+4=0\)
vì đường thẳng này nhận \(\overrightarrow{u}\left(2;3\right)\) làm VTPT \(\Rightarrow\) nó nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là \(\left\{{}\begin{matrix}x=1+3t\\y=-2-2t\end{matrix}\right.\)
b) ta có đường thẳng d nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT
phương trình tổng quát của đường thẳng đi qua \(N\left(0;-1\right)\) và nhận \(\overrightarrow{n}\left(1;2\right)\) làm VTPT là \(1\left(x-0\right)+2\left(y+1\right)=0\Leftrightarrow x+2y+2=0\)
vì nó nhận \(\overrightarrow{u}\left(-2;1\right)\) làm VTCP \(\Rightarrow\) phương trình tham số của nó là : \(\left\{{}\begin{matrix}x=-2t\\y=-1+t\end{matrix}\right.\)
c) ta có d đi qua điểm M và N \(\Rightarrow\) nó nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP
\(\Rightarrow\) phương trình tham số của đường thẳng đi qua \(M\left(1;-1\right)\) và nhận \(\overrightarrow{MN}\) làm VTCP là : \(\left\{{}\begin{matrix}x=1+2t\\y=-1+3t\end{matrix}\right.\)
ta có d nhận \(\overrightarrow{MN}\left(2;3\right)\) làm VTCP \(\Rightarrow\) d nhận \(\overrightarrow{n}\left(3;-2\right)\) làm VTPT
\(\Rightarrow\) phương trình tổng quát của d là : \(3\left(x-2\right)-2\left(y-3\right)=0\Leftrightarrow3x-2y=0\)
câu d và câu e ) bn chỉ cần tìm VTPT của 2 đường thẳng đó và \(\Rightarrow\) VTCP là ra hết thôi .
gợi ý : đường thẳng \(2x-3y-3=0\) có \(\overrightarrow{u}\left(2;-3\right)\) là VTPT
đường thẳng \(x-y+5=0\) có \(\overrightarrow{n}\left(1;-1\right)\) là VTPT
Viết phương trình đường thẳng d đi qua A(-2 ; 0) và tạo với đường thẳng d:x+3y–3= 0 một góc 450.
A. x+ y-3= 0 và x- 2y + 2= 0
B. 2x+ y+ 4= 0 và x-2y +2= 0
C. x+ 2y-3= 0 và 2x-y+4= 0
D. x-2y+1 = 0 và 2x+ y- 6= 0
Đáp án B
Phương trình đường thẳng d đi qua A ( -2; 0) có dạng: A(x+ 2) + By= 0.
Theo giả thiết, ta có:
Vậy: d: 2x+ y+ 4= 0 hoặc d: x- 2y + 2= 0.
Xác định a để đường thẳng a*x-y-1=0 đi qua giao điểm của 2 đường thẳng 2*x-y+3=0 và x+y+3=0
cho 2 đường thẳng
(d1) 3x-5y+2=0
(d2) 5x-2y+4=0
lập phương trình đường thẳng (d) đi qua giao điểm của 2 đươnè thẳng trên và:
a) song song với đường thẳng (d3) 2x-y+4=0
b) đi qua điểm M(1;4)