cho tam giác ABC vuông ở A, AB=6, AC=8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh IH*DC=IA*AD
c) Chúng minh AB*BI=BD*HB và tam giác AID cân
Cho tam giác ABC vuông ở A đường cao ah biết AB = 6 cm biết AC = 8 cm tính số chu vi của tam giác HAC và ABC
Cho tam giác ABC vuông ở A có AB = 6 cm AC = 8 cm Vẽ đường cao AH AC tính BC b Chứng minh tam giác ABC đồng dạng tam giác ahb c a chứng minh AB vuông bằng BH nhân BC nhân tính bh , b c đi Vẽ phân giác AD của góc A D thuộc BC Tính dB
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
Cho tam giác ABC vuông ở A có AB=6 AC=8.M thuộc BC.Kẻ MD vuông với AB,ME vuông với AC.
Tìm vị trí của M để điện tích tứ giác ADME lớn nhất
cho tam giác ABC vuông ở A kẻ đừng cao AH và đường phân giác BD
a) chứng minh tam giác AHB đồng giạng với tam giác ABC
b) tính AD,DC . Biết AB=6 , AC=8
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB∼ΔCAB(g-g)
Cho tam giác ABC vuông ở A, AB=6,AC=8; đường cao AH , phân giác BD. Gọi I là giao điểm của AH và BD
vẽ hình
Cho tam giác ABC vuông ở A ,đường cao AH , có AB = 6 cm , AC = 8 cm a.tính độ dài cạnh BC b.Chứng minh hai tam giác HAB và HCA đồng dạng c.Lấy điểm E trên cạnh BC sao cho CE = 4cm.Chứng Minh BE2=BH.BC d.Tia phân giác của góc ABC cắt cạnh AC ở D . Tính DIện Tích Tam Giác CED Làm Phiền Mọi Người Ạ
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta HAB\) và \(\Delta HCA\) có:
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\widehat{HAB}=\widehat{HCA}\) (cùng phụ với \(\widehat{B}\))
\(\Rightarrow\Delta HAB\sim\Delta HCA\) (g.g)
c) Em kiểm tra lại đề bài nhé.
cho tam giác vuông ABC vuông ở A,AB=30cm.Biết tgB=\(\dfrac{8}{15}\)
tính AC,BC
AC=AB.tg B
AC= 30.\(\dfrac{8}{15}\)
AC= 16cm
BC2=AB2+AC2
BC2 = 900+256=1156
BC=34cm
Ta có: \(tgB=\dfrac{8}{15}\Rightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\Rightarrow AC=\dfrac{8AB}{15}=\dfrac{8.30}{15}=16\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) ( định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+16^2}=34\left(cm\right)\)
Ta có: \(\tan\widehat{B}=\dfrac{8}{15}\)
\(\Leftrightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\)
\(\Leftrightarrow AC=16cm\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=1156\)
hay BC=34cm
Bài 6: Cho tam giác ABC vuông tại A, AB = 4cm, AC = 3 cm, trung tuyến AD, kẻ DK vuông góc với với AB, kẻ DH vuông góc với AC
a. Tứ giác AKDH là hình gì? Vì sao?
b. Tính độ dài AD
c. Tính diện tích tam giác ABD
Bài 7: Cho ABC vuông ở A (AB < AC ), đường cao AH. Gọi D là điểm đối xứng của A qua H. Đường thẳng kẻ qua D song song với AB cắt BC và AC lần lượt ở M và N. Chứng minh:
a. Tứ giác ABDM là hình thoi.
b. AM CD .
c. Gọi I là trung điểm của MC; chứng minh IN HN.
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
Cho tam giác ABC có AB = 8 cm AC = 6 cm BC= 10cm. Đường trung trực của BC cắt AC tại D cắt AB ở F. E thuộc tia đối của BD sao cho DE = DC
a) Tam giác ABC vuông tại A
b) Tam giác BCE vuông
c) BE\(\perp\)CE
Không cần vẽ hình đâu
khai thật lớp mấy
Cho tam giác vuông ABC(vuông ở A),biết AB =6 cm,AC=8 cm,BC=10 cm.Tính độ dài chiều cao hạ từ đỉnh A xuống cạnh đáy BC