AC=AB.tg B
AC= 30.\(\dfrac{8}{15}\)
AC= 16cm
BC2=AB2+AC2
BC2 = 900+256=1156
BC=34cm
Ta có: \(tgB=\dfrac{8}{15}\Rightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\Rightarrow AC=\dfrac{8AB}{15}=\dfrac{8.30}{15}=16\left(cm\right)\)
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) ( định lý Pytago)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+16^2}=34\left(cm\right)\)
Ta có: \(\tan\widehat{B}=\dfrac{8}{15}\)
\(\Leftrightarrow\dfrac{AC}{AB}=\dfrac{8}{15}\)
\(\Leftrightarrow AC=16cm\)
Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=1156\)
hay BC=34cm