Bài 2: Tỉ số lượng giác của góc nhọn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lekhoi

1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,

 

Akai Haruma
23 tháng 7 2021 lúc 18:07

Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$BH=\frac{AB^2}{BC}=\frac{9^2}{15}=5,4$ (cm)

$CH=BC-BH=15-5,4=9,6$ (cm)

$AC=\sqrt{BC^2-AB^2}=\sqrt{15^2-9^2}=12$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{9.12}{15}=7,2$ (cm)

Akai Haruma
23 tháng 7 2021 lúc 18:08

Hình vẽ:

Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 23:48

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9.6\left(cm\right)\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)


Các câu hỏi tương tự
CLOWN
Xem chi tiết
lekhoi
Xem chi tiết
Đỗ Thùy Linh
Xem chi tiết
Trần thị MỸ ngân
Xem chi tiết
Hue Do
Xem chi tiết
killer
Xem chi tiết
duong lan anh
Xem chi tiết
3 - Lâm Võ Phước Duy - 9...
Xem chi tiết
Phạm Thị Đông
Xem chi tiết