Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
A.Thư
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
14 tháng 5 2019 lúc 21:17

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

Mai Anh
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Phạm Thị Thái Hòa
Xem chi tiết
Nguyễn Mai Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 6 2020 lúc 22:27

a) Xét ΔABI và ΔHCI có

\(\widehat{BAI}=\widehat{CHI}\left(=90^0\right)\)

\(\widehat{AIB}=\widehat{HIC}\)(hai góc đối đỉnh)

Do đó: ΔABI∼ΔHCI(g-g)

b) Ta có: ΔABI∼ΔHCI(cmt)

\(\widehat{ABI}=\widehat{HCI}\)(hai góc tương ứng)

\(\widehat{ABI}=\widehat{IBC}\)(BI phân giác)

nên \(\widehat{IBC}=\widehat{ICH}\)(đpcm)

c) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔBAC có BI là đường phân giác ứng với cạnh AC(gt)

nên \(\frac{AI}{BA}=\frac{CI}{BC}\)(tính chất đường phân giác của tam giác)

hay \(\frac{AI}{6}=\frac{CI}{10}\)

Ta có: AI+CI=AC(I nằm giữa A và C)

hay AI+CI=8cm

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{AI}{6}=\frac{CI}{10}=\frac{AI+CI}{6+10}=\frac{8}{16}=\frac{1}{2}\)

Do đó: \(\left\{{}\begin{matrix}\frac{AI}{6}=\frac{1}{2}\\\frac{CI}{10}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AI=\frac{6}{2}=3cm\\CI=\frac{10}{2}=5cm\end{matrix}\right.\)

Vậy: AI=3cm;CI=5cm

Khánh An
Xem chi tiết
⭐Hannie⭐
31 tháng 5 2023 lúc 8:25

Áp dụng định lý pytago cho tam giác `ABC` ta có :

`BC^2= AB^2+AC^2`

`BC^2=6^2+8^2`

`BC^2= 36+64`

`BC^2=100`

`=>BC=10(cm)`

`->B` 

loading...

Võ Thị Tú
Xem chi tiết
Minh Hồng
12 tháng 5 2022 lúc 11:19

(Tự vẽ hình)

a) Áp dụng định lý Pytago ta có: 

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(BD\) chung

\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)

\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)

c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)

Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))

\(\Rightarrow DA< DC\) 

Nguyễn Huy Tú
12 tháng 5 2022 lúc 18:07

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AC^2+AB^2}=10cm\)

b, Xét tam giác BAD và tam giác BHD có 

BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900

Vậy tam giác BAD = tam giác BHD ( ch-gn) 

Phạm Đạt
Xem chi tiết
Nguyen Thang
Xem chi tiết
Thanh Nhã Phạm
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 14:13

a: Xet ΔABD vuông tại B và ΔAHD vuông tại H có

AD chung

góc BAD=góc HAD

=>ΔABD=ΔAHD

b; AB=AH

DB=DH

=>AD là trung trực của BH

c: Xet ΔDBI vuông tại B và ΔDHC vuông tại H có

DB=DH

góc BDI=góc HDC

=>ΔBDI=ΔHDC

=>DI=DC

=>ΔDIC cân tại D

d: Xét ΔAIC có AB/BI=AH/HC

nên BH//IC

e: AD vuông góc BH

BH//IC

=>AD vuông góc IC