Cho hai vectơ a → ; b → thỏa mãn a → = 4 , b → = 5 , a → , b → = 120 ° . Giá trị của tích vô hướng a → . b → là:
A. 10
B. -10
C. 10 3
D. - 10 3
Câu 4 : Cho tam giác ABC vuông cân tại A và AB =√2 . Tính vectơ CA . vectơ BC . Câu 5 : Cho ABC có trọng tâm G . Biểu diễn vectơ AG theo hai vectơ AB , AC được kết quả là? Câu 6 : Cho các vectơ a,b thỏa mãn|vectơ a | =1 , |vectơ B | =2 , | vectơ a - vectơ b| =3 . Tích vectơ a. vectơ b bằng? Câu 7 : Cho hình vuông ABCD có cạnh bằng a . Tính| vectơ AB - vectơ AD + vectơ CD | .
Câu 4:
Áp dụng định lý Pytago
\(BC^2=AB^2+AC^2\Rightarrow BC=2\)
Ta có:
\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)
Câu 5:
Gọi M là trung điểm BC
\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
Câu 6:
\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)
\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)
\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)
Câu 7:
\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)
\(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)
Cho vectơ a = (2; -2), vectơ b = (1; 4). Hãy phân tích vectơ c (5; 0) theo hai vectơ a và b.
Cho hai vectơ a → = 1 ; 3 , b → = − 2 3 ; 6 . Góc giữa hai vectơ a → ; b → là
A. 0 °
B. 30 °
C. 45 °
D. 60 °
a → = 1 2 + 3 2 = 2 , b → = − 2 3 2 + 6 2 = 48 = 4 3
a → . b → = 1. − 2 3 + 3 .6 = 4 3
cos a → , b → = a → . b → a → b → = 4 3 2.4 3 = 1 2 ⇒ a → , b → = 60
Chọn D
Cho hai vectơ a = (-1;1) b=(2;0) góc giữa hai vectơ a,b là
Áp dụng hệ quả của định lí cosin ta có
chào tôi tên trợ học lớp 7
bằng trừ căn 2 phần 2
Cho vectơ a, b là hai vectơ khác vectơ 0. Khi nào có đẳng thức
Có hai vec tơ a→, b→ bất kì như hình vẽ.
Vẽ hình bình hành ABCD sao cho
Ta có:
Do đó
a) ⇔ AC = AB + BC ⇔ B nằm giữa A và C
⇔ cùng hướng hay a→ và b→ cùng hướng.
b) ⇔ AC = BD
⇔ ABCD là hình chữ nhật
⇔ AB ⊥ CD hay
Cho hai vectơ cho hai vectơ \(\overrightarrow a ,\overrightarrow b \) và điểm M như hình 3.
a) Hãy vẽ vectơ \(\overrightarrow {MN} = 3\overrightarrow a ,\overrightarrow {MP} = - 3\overrightarrow b \)
b) Cho biết mỗi ô có cạnh bằng 1. Tính: \(\left| {3\overrightarrow b } \right|,\left| { - 3\overrightarrow b } \right|,\left| {2\overrightarrow a + 2\overrightarrow b } \right|\).
a) \(\overrightarrow {MN} = 3\overrightarrow a \)có độ dài bằng 3 lần vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \)
Suy ra, từ điểm M vẽ vectơ MN với độ dài là 6 ô vuông và có hướng từ trái sang phải
\(\overrightarrow {MP} = - 3\overrightarrow b \)có độ dài bằng 3 lần vectơ \( - \overrightarrow b \), ngược hướng với vectơ \(\overrightarrow b \)
Suy ra, từ điểm M vẽ vectơ MP với độ dài là 3 đường chéo ô vuông và có hướng từ trên xuống dưới chếch sang trái
b) Hình vuông với cạnh bằng 1 thì ta tính được đường chéo có độ dài là \(\sqrt 2 \); \(\left| {\overrightarrow b } \right| = \sqrt 2 \) . Suy ra:
\(\left| {3\overrightarrow b } \right| = 3\left| {\overrightarrow b } \right| = 3\sqrt 2 \); \(\left| { - 3\overrightarrow b } \right| = 3\left| {\overrightarrow { - b} } \right| = 3\sqrt 2 \); \(\left| {2\overrightarrow a + 2\overrightarrow b } \right| = \left| {2\left( {\overrightarrow a + \overrightarrow b } \right)} \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right|\)
Từ điểm cuối của vectơ \(\overrightarrow a \) vẽ một vectơ bằng vectơ \(\overrightarrow b \) ta có \(\overrightarrow c = \overrightarrow a + \overrightarrow b \)
Áp dụng định lý cosin ta tính được độ dài của vectơ \(\overrightarrow c \)là \(\left| {\overrightarrow c } \right| = \sqrt {{{\left| {\overrightarrow a } \right|}^2} + {{\left| {\overrightarrow b } \right|}^2} - 2\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos \left( {\widehat {\overrightarrow a ,\overrightarrow b }} \right)} = \sqrt {{2^2} + {{\sqrt 2 }^2} - 2.2.\sqrt 2 .\cos \left( {135^\circ } \right)} = \sqrt {10} \)
\( \Rightarrow \left| {2\overrightarrow a + 2\overrightarrow b } \right| = 2\left| {\overrightarrow a + \overrightarrow b } \right| = 2\left| {\overrightarrow c } \right| = 2\sqrt {10} \)
Lời giải:
Nếu bạn có $\overrightarrow{a}(x_1,y_1);\overrightarrow{b}(x_2,y_2)$ thì:
$\overrightarrow{a}.\overrightarrow{b}=x_1x_2+y_1y_2$
Áp dụng vào bài toán:
$\overrightarrow{a}.\overrightarrow{b}=1(-2)+3.1=-2+3=1$
Trong mặt phẳng tọa độ cho hai vectơ a → − 3 ; 3 3 , b → 2 ; 2 3 . Góc giữa hai vectơ a → ; b → bằng
A. 150 °
B. 130 °
C. 30 °
D. 60 °
cos a → , b → = − 3.2 + 3 3 .2 3 − 3 2 + 3 3 2 . 2 2 + 2 3 2 = 12 6.4 = 1 2
Do đó, góc giữa hai vecto là: a → , b → = 60 °
ĐÁP ÁN D
Cho hai vectơ a → và b → không cùng phương. Hai vectơ nào sau đây cùng phương?
A. u → = 3 5 a → + 3 b → v à v → = 2 a → - 3 5 b →
B. u → = 2 a → - 3 2 b → v à v → = - 1 3 a → - 4 b →
C. u → = - 2 3 a → + 3 b → v à v → = 2 a → - 9 b →
D. u → = 2 a → + 3 b → v à v → = 1 2 a → - 3 b →
Cho hai vectơ a ⃗ và b ⃗ không cùng phương. Hai vectơ nào sau đây cùng phương?
A. - 3 a → + b → v à - 1 2 a → + 6 b →
B. - 1 2 a → - b → v à 2 a → + b →
C. 1 2 a → - b → v à - 1 2 a → + b →
D. 1 2 a → + b → v à a → - 2 b →
Ta có: 1 2 a → − b → = − − 1 2 a → + b →
Do đó, hai vecto 1 2 a → − b → ; − 1 2 a → + b → cùng phương
Đáp án C