Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trọng An Nam
Xem chi tiết
Trần Nguyễn Tùng Dương
Xem chi tiết
Mê Cặc
17 tháng 8 2019 lúc 9:48

1 + 1=

Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ

Vương Hàn
Xem chi tiết
soyeon_Tiểubàng giải
7 tháng 10 2016 lúc 6:29

Ta có:

\(\begin{cases}a_2^2=a_1.a_3\\a_3^2=a_2.a_4\end{cases}\)\(\Rightarrow\begin{cases}\frac{a_2}{a_3}=\frac{a_1}{a_2}\\\frac{a_3}{a_4}=\frac{a_2}{a_3}\end{cases}\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1}{a_2}.\frac{a_2}{a_3}=\frac{a_3}{a_4}=\frac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\left(đpcm\right)\)

Lightning Farron
6 tháng 10 2016 lúc 23:18

vt rõ đề đi

Đỗ Quỳnh Anh
Xem chi tiết
Cấn Ngọc Minh
Xem chi tiết
Nhật Hạ
22 tháng 9 2019 lúc 17:31

Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ;  \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)

\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)

Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)

Vvhhnnb
Xem chi tiết
Minh Nhân
1 tháng 2 2021 lúc 23:29

\(a_1+a_2+a_3+a_4+a_5+a_6+a_7=0\left(1\right)\)

\(a_1+a_2=a_3+a_4=a_5+a_6=a_1+a_7=1\left(2\right)\)

Thay (2) vào (1) : 

\(1+1+1+a_7=0\)

\(\Rightarrow a_7=-3\)

\(a_1=1-a_7=1--3=4\)

\(a_2=1-a_1=1-4=-3\)

Chúc bạn học tốt !!!

 

ragon372007
Xem chi tiết
Phạm Trọng An Nam
Xem chi tiết
Hải Đăng
7 tháng 10 2017 lúc 20:59

Ta có:

\(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_2}{a_3}=\dfrac{a_1}{a_2}\\\dfrac{a_3}{a_4}=\dfrac{a_2}{a_3}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất dãy tỉ sô bằng nhau ta có:

\(\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\left(đpcm\right)\)

Chúc bạn học tốt!

Nguyễn Lưu Hà Phương
Xem chi tiết