cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\)
Biết \(P\left(1\right)=100\);\(P\left(-1\right)=50\);\(P\left(0\right)=1\);\(P\left(2\right)=120\).Tính \(P\left(3\right)\)
Yêu cầu trình bày zùm tui với ^_^
Cho đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\)với a,b,c,d là các số nguyên . BIết \(P\left(x\right)⋮5\)với mọi x là số nguyên . Chứng tỏ rằng các số nguyên a,b,c,d cũng chia hết cho 5
Bài 3: Khi chia đa thức \(P=x^{81}+ax^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ax^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\) có P(1) = 7 , P (2) = 28, P(3) = 63. Tính \(\frac{P\left(100\right)-P\left(-96\right)}{8}\)
Câu này bn lập hpt tìm a,b,c rồi thay 100 và -96 vô tính.
Mk chỉ gợi ý thôi bn tự làm nhé! ^^
Bài 3: Khi chia đa thức \(P\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+2x+1\) được số dư là 5 và khi chia đa thức P(x) cho (x-2) được số dư là -4
a) Hãy tìm các số thực A,B biết đa thức \(Q\left(x\right)=x^{81}+ã^{57}+bx^{41}+cx^{19}+Ax+B\) chia hết cho đa thức \(x^2-3x+2\)
b) Với giá trị của A và B vừa tìm được, hãy tính giá trị của đa thức
\(R\left(x\right)=Q\left(x\right)-P\left(x\right)+x^{81}+x^{57}-2x^{41}+2x^{19}+2x+1\)tại x = 1,032016
Cho đa thức \(f\left(x\right)=\)ax^2+bx+c với a, b, c là cá số thực
Biết rằng \(f\left(0\right);f\left(1\right);f\left(2\right)ćo\)giá trị nguyên
Cho đa thức \(f\left(x\right)=x^2+4x+3\). Thực hiện trò chơi sau, nếu trên bảng đã có đa thức \(P\left(x\right)=ax^2+bx+c\) thì được phép viết thêm lên bảng một trong 4 đa thức sau:
1) \(Q\left(x\right)=cx^2+bx+a\)
2) \(R\left(x\right)=P\left(x+t\right)\) với \(t\) là số thực bất kì khác 0.
3) \(S\left(x\right)=x^2.f\left(\dfrac{1}{x}+1\right)\)
4) \(T\left(x\right)=\left(x-1\right)^2.f\left(\dfrac{1}{x-1}\right)\).
Hỏi sau một số bước ta có thể viết được đa thức \(g\left(x\right)=x^2+10x+9\) hay không?
Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)
biết \(P\left(1\right)=10,P\left(2\right)=20,P\left(3\right)=30.Tính\)\(P\left(12\right)+P\left(-8\right)\)
Xét đa thức Q(x) = P(x) - 10x ,ta có:
Q(1) = P(1) - 10 = 10 - 10 = 0
Q(2) = P(2) - 20 = 20 - 20 = 0
Q(3) = P(3) - 30 = 30 - 30 = 0
=> x = 1 ; x = 2 ; x = 3 là 3 nghiệm của đa thức Q(x), do đó \(Q\left(x\right)⋮\left(x-1\right)\left(x-2\right)\left(x-3\right)\).
=> Q(x) có dạng :
Q(x) = (x - 1)(x - 2)(x - 3)(x - a) \(\left(a\inℚ\right)\)
Khi đó: P(x) = (x - 1)(x - 2)(x - 3)(x - a) + 10x
Ta có: P(12) = 11.10.9.(12 - a) + 120
P(-8) = -9.(-10).(-11)(-8 - a) - 80
=> P(12) + P(-8) = 11.1019.(12 - a + 8 + a) + 40
= 11.10.9.20 + 40 = 19840
Vậy P(12) + P(-8) = 19840
cái này có trong nâng cao chuyên đề thì phải, nâng cao chuyên đề 8 ấy, e mở ra tham khảo nhá, t nhác vt
hình như bài 98 thì phải phần đa thức ý
Nâng cao chuyên đề toán 8 đại nhé
Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)biết P(1)=1; P(2)=4; P(3)=7; P(4)= 10
a) Tìm các hệ số a,b,c,d
b) Với a,b,c,d tìm được ta chia đa thức P(x) cho 2x+3 ta được thương là đa thức Q(x) có bậc là 3. Hãy tìm hệ số của x trong Q(x)
Câu a :
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}P\left(1\right)=1^4+a.1^3+b.1^2+c.1+d=1\\P\left(2\right)=2^4+a.2^3+b.2^2+c.2+d=4\\P\left(3\right)=3^4+a.3^3+b.3^2+c.3+d=7\\P\left(4\right)=4^4+a.4^3+b.4^2+c.4+d=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c+d=0\\8a+4b+2c+d=-12\\27a+9b+3c+d=-74\\64a+16b+4c+d=-246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-7a-3b-c=12\\-26a-8b-2c=74\\-63a-15b-3c=246\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=0-\left(-10+35-47\right)=22\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-10\\b=35\\c=-47\\d=22\end{matrix}\right.\)
cho đa thức P(x) = \(ax^3+bx^2+cx+d\) . Biết 13a-6b+4c=0 . CMR : \(P\left(\dfrac{1}{2}\right).P\left(-2\right)\ge0\)
Lời giải:
Ta có:
\(P\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}+\frac{c}{2}+d=\frac{1}{8}(a+2b+4c+8d)\)
\(\Rightarrow 8P\left(\frac{1}{2}\right)=a+2b+4c+8d(1)\)
\(P(-2)=-8a+4b-2c+d\)
\(\Rightarrow 8P(-2)=-64a+32b-16c+8d(2)\)
Từ \((1); (2)\Rightarrow 8P(\frac{1}{2})-8P(-2)=(a+2b+4c+8d)-(-64a+32b-16c+8d)\)
\(=65a-30b+20c\)
\(=5(13a-6b+4c)=0\)
Do đó: \(8P(\frac{1}{2})=8P(-2)\Leftrightarrow P(\frac{1}{2})=P(-2)\)
\(\Rightarrow P(\frac{1}{2})P(-2)=[P(-2)]^2\geq 0\)
Ta có đpcm.