A=1/21+1/22+1/23+1/24+...+1/79+1/80 hãy so sánh A và 39/40
So sánh A và B biết :
A= 39/40 và B= 1/ 21 + 1/ 22 + 1/ 23 +.................+ 1/ 79 + 1/ 80
Hãy chứng tỏ rằng:
a) 1/41+1/42+1/43+...+1/79+1/80>7/12
b)11/15<1/21+1/22+1/23+...+1/59+1/60<3/2
So sánh A và B biết:
\(A=\frac{39}{40}\)
\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}\)
B = 1/21 + 1/22 + ... + 1/50 > 1/60 + 1/60 + ... + 1/60 (30 số hạng)
=> B > 30/60 = 1/2
Mà 1/2 > 39/40
=> B > A
\(B=\frac{1}{21}+\frac{1}{22}+...+\frac{1}{50}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{3}{5}=\frac{24}{40}< \frac{39}{40}=A\)
\(\Rightarrow A>B\)
B=\(\frac{1}{21}\)+\(\frac{1}{22}\)+ ... +\(\frac{1}{50}\)< \(\frac{1}{50}\)+ \(\frac{1}{50}\)+\(\frac{1}{50}\)+ ... + \(\frac{1}{50}\)= \(\frac{30}{50}\)= \(\frac{3}{5}\)< \(\frac{39}{40}\)= A
hay B < A
So sánh A với \(\frac{1}{3}\)
A = \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+....+\frac{1}{40}\)
Từ 21,22,23,24,...,40 có 20 chữ số nên A gồm 20 chữ số
ta có : \(\frac{1}{21}>\frac{1}{60}\),\(\frac{1}{22}>\frac{1}{60}\), ...., \(\frac{1}{40}>\frac{1}{60}\)
\(\Rightarrow\)A \(>\)\(\frac{1}{60}.20\)= \(\frac{1}{3}\)
bài 1 so sánh A và B biết : a) A=20+21+22+ 23+......+22010
b) B=22011-1
A = 2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹
⇒ A = 2A - A = (2 + 2² + 2³ + 2⁴ + ... + 2²⁰¹¹) - (2⁰ + 2¹ + 2² + 2³ + ... + 2²⁰¹⁰)
= 2²⁰¹¹ - 2⁰
= 2²⁰¹¹ - 1
= B
Vậy A = B
So sánh 1/21+1/22+1/23+1/24+1/25+1/26+1/27+1/28+1/29+1/30 với 1/3
Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)
`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`
`=>A>(1)/(30).10`
`=>A>10/30`
`=>A>1/3`
`=>đpcm`
S =1 / 21 + 1/ 22 + 1/ 23 + ... + 1 / 149 + 1 / 150
hãy so sánh S với 3/ 4
Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)
\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)
\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)
Giải giúp mik câu này với ạ, mik cần gấp
So sánh: A=19^21+1/19^22+1 và B=19^22+1/19^23+1
ý bạn là như này đk?
A=1921+1:1922+1
B=1922+1:1923+1
Cho biểu thức : A=1/21+1/22+1/23+1/24+...+1/40. Chứng tỏ 1/2<A<1
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!