Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Helena
Xem chi tiết
Hoàng Phúc
26 tháng 3 2016 lúc 16:06

đơn giản

ab+2a-(b+2)=1

<=>a(b+2)-(b+2)=1

<=>(a-1)(b+2)=1=1.1=(-1).(-1)

+)(a-1)(b+2)=1.1

=>a-1=1 và b+2=1

=>a=2 và b=-1

+)(a-1)(b+2)=(-1).(-1)

=>a-1=-1 và b+2=-1

=>a=0 và b=-3

Vậy \(\left(a;b\right)\in\left\{\left(0;-3\right);\left(2;-1\right)\right\}\)
 

Jimmy
Xem chi tiết
shitbo
17 tháng 2 2021 lúc 20:33

ta thấy ngay: 4a+19>2a+5 nên: 3^b>3^c hay: 3^b phải chia hết cho 3^c nên:

4a+19 chia hết cho 2a+5

=> 9 chia hết cho 2a+5 => a=2 (vì a nguyên dương)

=> b=3;c=2

Khách vãng lai đã xóa
Nguyễn Thục Hiền
Xem chi tiết
Nguyễn Đặng Linh Nhi
30 tháng 12 2017 lúc 16:16

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:06

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

Nguyễn Thị Thùy Trâm
29 tháng 4 2018 lúc 12:10

bài a và c theo mình thì bạn linh nhi nguyễn đặng thêm vào câu a cho hoàn chỉnh

câu c phải xét với số p nguyên tố bé nhất là 2 đã

sau đó thỏa mãn 3 rồi mới xét nhé

Vui lòng để tên hiển thị
Xem chi tiết
꧁Gιʏuu ~ Cнᴀɴ꧂
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 11:15

undefined

Đăng Dũng Hoàng
13 tháng 10 lúc 20:12

em không bik ạ

 

Hoàng Phan
Xem chi tiết
ngô thế trường
21 tháng 12 2016 lúc 16:46

các số nguyên đó là 1,3,5,7,9

k mình nha cậuHoàng Phan

Nguyễn Lê Thành Công
Xem chi tiết
tranthithao tran
7 tháng 1 2018 lúc 19:31

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1

Thanh Tùng DZ
7 tháng 1 2018 lúc 19:30

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)

\(\frac{b+a}{ab}=\frac{1}{ab}\)

\(\Rightarrow b+a=1\)

Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1

Trần Thiên Ngân
4 tháng 2 2020 lúc 19:07

xét hiệu đi bn

1/a+1/b-1/ab=0 <=>b+a-1/ab=0<=>b+a=1

bn tự giải tiếp nhé

Khách vãng lai đã xóa
bou99
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:02

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

Nguyễn Huy Tú
25 tháng 7 2021 lúc 15:07

Bài 1 : 

a^2 + b^2 + 9 = ab + 3a + 3b 

<=> 2a^2 + 2b^2 + 18 = 2ab + 6a + 6b 

<=> a^2 - 2ab + b^2 + a^2 - 6a + 9 + b^2 - 6a + 9 = 0 

<=> ( a - b)^2 + ( a - 3)^2 + ( b - 3)^2 = 0 

Dấu ''='' xảy ra khi a = b = 3 

Nguyễn Việt Lâm
25 tháng 7 2021 lúc 15:14

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

zZz Cool Kid_new zZz
Xem chi tiết
shitbo
17 tháng 11 2019 lúc 15:05

nguowch đề :))

Khách vãng lai đã xóa
shitbo
17 tháng 11 2019 lúc 15:13

\(ab^2+b+7⋮a^2b+a+b\Leftrightarrow a\left(ab^2+b+7\right)-b\left(a^2b+a+b\right)⋮a^2b+a+b\Leftrightarrow7a-b^2⋮a^2b+a+b\left(1\right)\)

\(+,7a=b^2\Rightarrow\left(a;b\right)=\left(7k^2;7k\right)\left(k\text{ nguyên dương}\right)\)

\(+,7a>b^2\text{ từ 1}\Rightarrow7a-b^2\ge a^2b+a+b\Leftrightarrow6a\ge a^2b+b+b^2\text{ mà: b là số nguyên dương}\Rightarrow b< 3\Leftrightarrow b\in\left\{1;2\right\}\)

làm tiếp

\(+,7a< b^2\text{ từ (1)}\Rightarrow b^2-7a\ge a^2b+a+b\Leftrightarrow voli\text{ :)}.Tự\text{ kết luận}\)

Khách vãng lai đã xóa
Đăng Dũng Hoàng
13 tháng 10 lúc 20:12

em ko bik