cho ab=bc=ca. chứng minh rằng a=b=c
cho tam giác ABC có B=60, C<A
a,chứng minh rằng AB<BC
b,trên BC lấy D sao cho BD=BA chứng minh rằng tam giác ABD đều
c,AB,BC,CA
a) xét ΔABC ta có
C<A
=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)
b)xét ΔABD ta có
BD = BA
=> ΔABD là Δ cân tại B
mà B=60o
=> ΔABD làΔ đều
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
cho a,b,c>0 thoả mãn a+b+c=1
chứng minh rằng √(a+bc) +√(b+ca) +√(c+ab)≥1+√bc+√ca+√ab
Ta chứng minh:\(\sqrt{a+bc}\ge a+\sqrt{bc}\)
\(\Leftrightarrow a+bc\ge a^2+bc+2a\sqrt{bc}\)
\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)\(\Leftrightarrow a\ge a\left(a+2\sqrt{bc}\right)\Leftrightarrow1\ge a+2\sqrt{bc}\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)
\(\Leftrightarrow b+c-2\sqrt{bc}\ge0\Leftrightarrow\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(luôn đúng)
\(\Leftrightarrow\sqrt{a+bc}\ge a+\sqrt{bc}\)
CMTT\(\sqrt{b+ca}\ge b+\sqrt{ca}\)
\(\sqrt{c+ab}\ge c+\sqrt{ab}\)
\(\Leftrightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)Vậy ......
(Dấu = xảy ra (=) a=b=c=1/3
cho a,b,c>=0, a+b+c=1. chứng minh rằng (a-bc)/(a+bc)+(b-ca)/(b+ca)+(c-ab)/(c+ab)<=3/2
\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{a^2+ab+bc+ca}=\frac{a-bc}{\left(a+b\right)\left(c+a\right)}\)
\(=\left(a-bc\right)\sqrt{\frac{1}{\left(a+b\right)^2\left(c+a\right)^2}}\le\frac{\frac{a-bc}{\left(a+b\right)^2}+\frac{a-bc}{\left(c+a\right)^2}}{2}=\frac{a-bc}{2\left(a+b\right)^2}+\frac{a-bc}{2\left(c+a\right)^2}\)
Tương tự, ta có: \(\frac{b-ca}{b+ca}\le\frac{b-ca}{2\left(b+c\right)^2}+\frac{b-ca}{2\left(a+b\right)^2}\)\(;\)\(\frac{c-ab}{c+ab}\le\frac{c-ab}{2\left(c+a\right)^2}+\frac{c-ab}{2\left(b+c\right)^2}\)
=> \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{a-bc+b-ca}{2\left(a+b\right)^2}+\frac{b-ca+c-ab}{2\left(b+c\right)^2}+\frac{a-bc+c-ab}{2\left(c+a\right)^2}\)
\(\frac{\left(a+b\right)\left(1-c\right)}{2\left(a+b\right)\left(1-c\right)}+\frac{\left(b+c\right)\left(1-a\right)}{2\left(b+c\right)\left(1-a\right)}+\frac{\left(c+a\right)\left(1-b\right)}{2\left(c+a\right)\left(1-b\right)}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Cho (a + b + c) ² = 3(ab + bc + ca). Chứng minh rằng a = b = c
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
hay a=b=c
Cho a b = b c = c a . Chứng minh rằng a = b = c
ad t/ch dãy tỉ số bằng nhau, ta có:
a b = b c = c a = a + b + c b + c + a = 1 ⇒ a = b = c ( dpcm )
Cho dãy tỉ số \(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}\) (ab,bc,ca có gạhj ngang trên đầu). Chứng minh rằng a=b=c
cho ab+bc+ca>0,1/ab+1/bc+1/ca >0. chứng minh rằng a,b,c cùng dấu
Cho các số dương \(a,b,c\) thoả mãn \(a+b+c=3\). Chứng minh rằng: \(\dfrac{a^2+bc}{b+ca}+\dfrac{b^2+ca}{c+ab}+\dfrac{c^2+ab}{a+bc}\ge3\)
Cho a, b, c là 3 số dương thỏa mãn ab + bc + ca = 3abc. Chứng minh rằng:
a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 3 2
Từ điều kiện đề bài ta có a b + b c + c a a b c = 3 ⇔ 1 a + 1 b + 1 c = 3
Áp dụng hai lần bất đẳng thức Côsi cho hai số dương, ta có:
a 2 + b c ≥ 2 a 2 . b c = 2 a b c ⇒ a a 2 + b c ≤ 2 2 a b c = 1 2 b c 1 b . 1 c ≤ 1 2 1 b + 1 c ⇒ a a 2 + b c ≤ 1 4 1 b + 1 c
Tương tự ta có:
b b 2 + c a ≤ 1 4 1 c + 1 a ; c c 2 + a b ≤ 1 4 1 a + 1 b ⇒ a a 2 + b c + b b 2 + c a + c c 2 + a b ≤ 1 2 1 a + 1 b + 1 c = 3 2 .