Giai phương trình
x+1/2009 + x+3/2007 = x+5/2005 + x+7/2003
a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)
\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)
\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow x+8-12+20x=0\)
\(\Leftrightarrow21x-4=0\)
\(\Leftrightarrow21x=4\)
\(\Leftrightarrow x=\dfrac{4}{21}\)
Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)
Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!
a)
PT \(\Leftrightarrow \frac{4x+2}{12}-\frac{3x-6}{12}=\frac{12-8x}{12}-\frac{12x}{12}\)
\(\Leftrightarrow 4x+2-3x+6=12-8x-12x\)
\(\Leftrightarrow 21x=4\Leftrightarrow x=\frac{4}{21}\)
b)
PT \(\Leftrightarrow \frac{30x+15}{20}-\frac{100}{20}-\frac{6x+4}{20}=\frac{24x-12}{20}\)
\(\Leftrightarrow 30x+15-100-6x-4=24x-12\Leftrightarrow -89=-12\) (vô lý)
Vậy pt vô nghiệm.
\(\frac{x-5}{2009}+\frac{x-7}{2007}=\frac{x-9}{2005}+\frac{x-11}{2003}\)
Ta có :
\(\frac{x-5}{2009}+\frac{x-7}{2007}=\frac{x-9}{2005}+\frac{x-11}{2003}\)
\(\Leftrightarrow\)\(\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)=\left(\frac{x-9}{2005}-1\right)+\left(\frac{x-11}{2003}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-2014}{2009}+\frac{x-2014}{2007}=\frac{x-2014}{2005}+\frac{x-2014}{2003}\)
\(\Leftrightarrow\)\(\frac{x-2014}{2009}+\frac{x-2014}{2007}-\frac{x-2014}{2005}-\frac{x-2014}{2003}=0\)
\(\Leftrightarrow\)\(\left(x-2014\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\)
Nên \(x-2014=0\)
\(\Rightarrow\)\(x=2014\)
Vậy \(x=2014\)
Chúc bạn học tốt ~
\(\frac{x-5}{2009}+\frac{x-7}{2007}=\frac{x-9}{2005}+\frac{x-11}{2003}\)
Trừ cả 2 vế cho 2 ta được :
\(\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)=\left(\frac{x-9}{2005}-1\right)+\left(\frac{x-11}{2003}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2009}+\frac{x-2014}{2007}=\frac{x-2014}{2005}+\frac{x-2014}{2003}\)
\(\Leftrightarrow\frac{x-2014}{2009}+\frac{x-2014}{2007}-\frac{x-2014}{2005}-\frac{x-2014}{2003}=0\)
\(\Leftrightarrow\left(x-2014\right)\times\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\right)=0\)
Mà : \(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{2003}\ne0\)
\(\Rightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
\(\dfrac{2009-x}{7}+\dfrac{2007-x}{9}+\dfrac{2005-x}{11}+\dfrac{2003-x}{13}=\dfrac{x-17}{-1999}+\dfrac{x-15}{-2001}+\dfrac{x-13}{-2003}+\dfrac{x-11}{-2005}\)
x+1/2009 + x+3/2007 = x+5/2005 = x+7/1993
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+17}{1993}\\ \Leftrightarrow\frac{x+1}{2009}+1+\frac{x+3}{2007}+1=\frac{x+5}{2005}+1+\frac{x+17}{1993}\\ \Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}-\frac{x+2010}{2005}-\frac{x+2010}{1993}=0\\ \Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{1993}\right)=0\\ \Leftrightarrow x+2010=0\\ \Leftrightarrow x=-2010\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2010\right\}\)
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{1993}\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+3}{2007}+1=\frac{x+5}{2005}+1+\frac{x+7}{1993}+1\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}=\frac{x+2010}{2005}+\frac{x+2010}{1993}\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}-\frac{x+2010}{2005}-\frac{x+2010}{1993}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x-2010=0\Leftrightarrow x=2010\)
Vậy \(x=2010\)
x+1/2009+x+3/2007=x+5/2005+x+7/1993
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{2003}\)'
\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+5}{2005}+1\right)+\left(\frac{x+7}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}=\frac{x+2010}{2005}+\frac{x+2010}{2003}\)
\(\Rightarrow x+2010=0\Leftrightarrow x=-2010\left(vì:\frac{1}{2009}+\frac{1}{2007}< \frac{1}{2005}+\frac{1}{2003}\right)\)
Giải các phương trình:
\(\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}=4\)
\(\frac{x-3}{2011}+\frac{x-5}{2009}+\frac{x-7}{2007}+\frac{x-9}{2005}=4\)
\(\Leftrightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-7}{2007}-1\right)+\left(\frac{x-9}{2005}-1\right)=0\)
\(\Leftrightarrow\frac{x-2014}{2011}+\frac{x-2014}{2009}+\frac{x-2014}{2007}+\frac{x-2014}{2005}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2009}+\frac{1}{2007}+\frac{1}{2005}\right)=0\)
|________________A________________|
Do A > 0
nên x - 2014 = 0
<=> x = 2014
1-2-3+4+5-6-7+8+2011-2002-2003+2004+2005-2006-2007+2008+2009=
Tính nhanh:
=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009
=2009
Giải phương trình:
(x+1)/(2010)+(x+2)/(2009)+(x+3)/(2008)=(x+4)/(2007)+(x+5)/(2006)+(x+6)/(2005)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}=\frac{x+4}{2007}+\frac{x+5}{2006}+\frac{x+6}{2005}\)
<=> \(\frac{x+1}{2010}+1+\frac{x+2}{2009}+1+\frac{x+3}{2008}+1=\frac{x+4}{2007}+1+\frac{x+5}{2006}+1+\frac{x+6}{2005}+1\)
<=> \(\frac{x+2011}{2010}+\frac{x+2011}{2009}+\frac{x+2011}{2008}-\frac{x+2011}{2007}-\frac{x+2011}{2006}-\frac{x+2011}{2005}\) =0
<=> (x+2011).(\(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}-\frac{1}{2005}\) )=0
<=> x+2011=0
<=> x=-2011
Vậy pt có nghiệm là x=-2011
Giải các phương trình:
\(\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}=4\)
\(\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}=4\)
\(\Leftrightarrow\dfrac{x-3}{2011}+\dfrac{x-5}{2009}+\dfrac{x-7}{2007}+\dfrac{x-9}{2005}-4=0\)
\(\Leftrightarrow\left(\dfrac{x-3}{2011}-1\right)+\left(\dfrac{x-5}{2009}-1\right)+\left(\dfrac{x-7}{2007}-1\right)+\left(\dfrac{x-9}{2005}-1\right)=0\)
\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2009}+\dfrac{x-2014}{2007}+\dfrac{x-2014}{2005}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2007}+\dfrac{1}{2005}\right)=0\)
\(\Leftrightarrow x-2014=0\) ( do \(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2007}+\dfrac{1}{2005}\ne0\))
\(\Leftrightarrow x=2014\)
Vậy phương trình có nghiệm S=\(\left\{2014\right\}\)