Tìm số tự nhiên x, y biết:
a) (x-1). (y+1) =6
b) (2x-1). (2y+1) =9
Tìm số tự nhiên x,y :
a. ( x+1)( y-5 )= 6
b.( 2x+1)(2y-1)= 15
a. Ta có:
( x+1)( y-5 )= 6
=> x+1; y-5 ∈ 6
=> x+1; y-5 ∈ { 1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y-5 | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -6 |
y | 11 | -1 | 8 | 2 | 7 | 3 | 6 | Còn |
Còn Câu B bạn tự làm nhé, tương tự như câu a
Tìm số tự nhiên x, y biết:
a, (2x + 1) . (y - 3) = 12
b, (x - 3)(y + 5) = 9
Tham khảo:
a)
( 2x + 1 ) . ( y - 3 ) = 12
Vì 2x +1 là số lẻ.
Do ( 2x + 1 ) . ( y - 3) = 12
=> 2x + 1 : y - 3 thuộc Ư ( 12) = { 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
=> 2 x +1 = 1 => x= 0
hoặc y - 3 = 12 => y = 15
=> 2x + 1 = 3 => x = 2
hoặc y - 3 = 4 => y = 7
=> 2x + 1 = 2 ( L)
VẬY ( x ; y) = { ( 0 ; 15 ) ; ( 2 ; 7) }
a, (2x + 1) (y - 3) = 12
=> y-3 ϵ Ư(12) = {+-1; +-2; +-3; +-4; +-6; +-12}
=> Tìm các giá trị của y (tự làm:>)
Ta có bảng sau (tự làm nốt:>)
2x+1
y-3
x
y
=> (x; y) =...
b, Ý này tương tự ý trên
còn nếu bạn muốn mình giải chi tiết thì bảo nha:>
a) (2x+1)(y-3)=12
<=> 2x+1=12
y-3=12
<=> x=11/2
y=15
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
Bài 1: Tìm số hữu tỉ x biết:
a, ( 2x - 1 )4 = 81 b, ( x - 1 )5 = -32
c, ( 2x - 1 )6 = ( 2x - 1 )8
Bài 2: Tìm các số tự nhiên x, y biết rằng:
a, 2x + 1 . 3y = 12x. b, 10x : 5y = 20y
c, 2x = 4y - 1 và 27y = 3x + 8
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Tìm số tự nhiên x, y biết:
a) (x-1). (y+1) =6
b) (2x-1). (2y+1) =9
Tìm số tự nhiên x, y biết:
a) (x-1). (y+1) =6
b) (2x-1). (2y+1) =9
Tìm số tự nhiên x, y biết:
a) (x-1). (y+1) =6
b) (2x-1). (2y+1) =9
Tìm các số tự nhiên x,y biết:
(2x+1)(2y-1)=9
có ai giải đáp giúp mình với
Vì \(x\inℕ\)\(\Rightarrow2x+1\inℕ\)
\(y\inℕ\Rightarrow2y-1\ge-1\)
Nếu \(2y-1=-1\)\(\Rightarrow\left(2x+1\right)\left(2y-1\right)< 0\)trái với đề bài
\(\Rightarrow2y-1\ge0\)\(\Rightarrow2y-1\inℕ\)\(\Rightarrow\)\(2x+1\)và \(2y-1\)là ước nguyên dương của 9
Lập bảng giá trị ta có:
\(2x+1\) | \(1\) | \(3\) | \(9\) |
\(x\) | \(0\) | \(1\) | \(4\) |
\(2y-1\) | \(9\) | \(3\) | \(1\) |
\(y\) | \(5\) | \(2\) | \(1\) |
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;5\right)\), \(\left(1;2\right)\), \(\left(4;1\right)\)
Mình chỉ cần kết quả thui ạ, thanks mn!
Tìm các cặp số tự nhiên (x, y) biết:
a) ( x – 3)(y + 5) = 13
b) (8 - 2x)( 11 – 5y)
c) ( 3x – 1)( y + 2) = 16
d) x – 3 = y(x – 1)