Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Sam
Xem chi tiết
Quân
Xem chi tiết
Akai Haruma
20 tháng 3 2020 lúc 22:44
Khách vãng lai đã xóa
Anh Quốc
Xem chi tiết
©ⓢ丶κεη春╰‿╯
24 tháng 2 2018 lúc 17:16

ta có: a+b+c=1 
<=>(a+b+c)^2=1 
<=>ab+bc+ca=0 (1) 
mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 
x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 
<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 
=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 
<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 
từ (1) và (2) ta có đpcm 
Chúc bạn học giỏi!

:3

 nguyễn hà
Xem chi tiết
 Mashiro Shiina
13 tháng 4 2018 lúc 22:05

Câu b mình vừa làm rồi

a)

Áp dụng bđt Cauchy-Scharz:

\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\)

\(=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(x+y\right)+\left(y+z\right)}+\dfrac{z}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

\(=\dfrac{1}{4}.3=\dfrac{3}{4}\)

Dấu "=" khi \(x=y=z\)

Phạm Ngọc Trà Thanh
Xem chi tiết
Lala Yuuki
Xem chi tiết
Trần Minh Hoàng
30 tháng 12 2020 lúc 16:16

2: Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}=\dfrac{a\left(a+b+c\right)}{b+c}+\dfrac{b\left(a+b+c\right)}{c+a}+\dfrac{c\left(a+b+c\right)}{a+b}-a-b-c=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)=a+b+c-a-b-c=0\)

Trần Minh Hoàng
30 tháng 12 2020 lúc 16:26

1: Sửa đề: Cho \(x,y,z\ne0\) và \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}=\dfrac{2}{2x+y+2z}\).

CM:....

Đặt 2x = x', 2z = z'.

Ta có: \(\dfrac{2}{x'}+\dfrac{2}{y}+\dfrac{2}{z'}=\dfrac{2}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}+\dfrac{1}{y}+\dfrac{1}{z'}=\dfrac{1}{x'+y+z'}\)

\(\Leftrightarrow\dfrac{1}{x'}-\dfrac{1}{x'+y+z'}+\dfrac{1}{y}+\dfrac{1}{z'}=0\)

\(\Leftrightarrow\dfrac{y+z'}{x'\left(x'+y+z'\right)}+\dfrac{y+z'}{yz'}=0\)

\(\Leftrightarrow\dfrac{\left(y+z'\right)\left(yz'+x'^2+x'y+x'z'\right)}{x'yz'\left(x'+y+z'\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x'+y\right)\left(y+z'\right)\left(z'+x'\right)}{x'yz'\left(x'+y+z'\right)}=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(2z+2x\right)=0\Leftrightarrow\left(2x+y\right)\left(y+2z\right)\left(z+x\right)=0\left(đpcm\right)\)

 

 

Nguyễn bảo ngoc
Xem chi tiết
Nguyễn bảo ngoc
Xem chi tiết
zZz Cool Kid_new zZz
28 tháng 8 2019 lúc 20:06

2

a

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)

\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)

b

Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)

Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)

Áp dụng kết quả câu a ta được:

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

nguyen tung duong
Xem chi tiết