cho P(x^2+1)=x^4+5x^2+3. Tính P(2010)
Xét tính chẵn lẻ của các hàm số sau
c) y = \(\sqrt{2x+9}\)
d) y = \(\left(x-1\right)^{2010}+\left(x+1\right)^{2010}\)
e) y = \(\dfrac{x^4+3x^2-1}{x^2-4}\)
f) y = \(\left|x\right|^7.x^3\)
g) y = \(\sqrt[3]{5x-3}+\sqrt[3]{5x+3}\)
h) y = \(\sqrt{3+x}-\sqrt{3-x}\)
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP
e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)
Vậy hàm số lẻ
\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)
Vậy hàm số chẵn
\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)
Vậy hàm số lẻ
\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)
Vậy hàm số lẻ
1. Cho biểu thức:A=2x2−5x−5A=2x2−5x−5
Tính giá trị của biểu thức x=−2,x=12x=−2,x=12
2.Cho biểu thức:D=(x2−1).(x2−2).(x2−3).....(x2−2015)D=(x2−1).(x2−2).(x2−3).....(x2−2015)
Tính giá trị biểu thức D tại x=(x2+2010).(x−10)=0x=(x2+2010).(x−10)=0
3.Tìm giá trị nhỏ nhất của biểu thức:
a.A=(x−3)2+9a.A=(x−3)2+9
b.(x−1)+(y+2)2+10(x−1)+(y+2)2+10
c.|x−1|+(2y−1)4+1|x−1|+(2y−1)4+1
4.Tính giá trị lớn nhất của biểu thức:
a.P=−2.(x−3)2+5P=−2.(x−3)2+5
b.Q=5(x−14)2+21Q=5(x−14)2+21
5.Tìm x thuộc Z để A=x−5x−3A=x−5x−3 thuộc Z
Cho \(P\left(x^2+1\right)=x^4+5x^3+3\) . Tính P(2010)
Biết : \(5x^2+\frac{5}{4}y^2-3xy+\frac{2}{3}x+\frac{1}{3}y+\frac{1}{9}=0\). Tính : 6x + 3y - 2010.
Tìm được x= -1/6 ; y = -1/3 . Suy ra 6x + 3y - 2010 = -1 + (-1) -2010 = -2012
cho f(x)= x*5-5x*4+5x*3-5x*2+5x-1 tính giá trị biểu thức f(x) tại x=4 bằng 2 cách nhanh nhất
tìm giá trị nhỏ nhất của A= / x- 2010/ + ( y+ 2011)^2010 +2011 và giá trị của x, y tương ứng
2, tính : A = 2^12*3^5 - 4^6 * 9^2 / (2^2 * 3)^6 + 8^4 *3^5 - 5^10 *7^3 - 25^5 *49^2/ (125*7)^3 + 5^9 */14^3
3, Cho hàm số y = f(x) = ax^2 + bx +c
Cho biết f(0)= 2010; f(1)=2012 ; f(-1)= 2012. Tính f(-2)
Tìm x thỏa mãn điều kiện
(2x+1)^3-(2x+1).(4x^2-2x+1)-3.(2x-1)^2=15
y.(y+3)^2-(y+2).(y^2-2y+4)-6.(y+5).(y-5)=97
(x-3)^3-(x-3).(x^2+3x+9)+9.(x+1)^2=18
x.(x-4).(x+4)-(x-5).(x^2+5x+25)=13
2.Rút gọn biểu thức rồi tính giá trị
3.(x-1).(x^2+x+1)+(x-1)^3-4x.(x+1).(x-1) tại x=-1
(3xy-2).(9x^2y^2+6xy+4)-3xy.(3xy+1)^2 tại x=-2010,y=-1/2010
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)
1. Tìm x biết:
a,5x.( x+3/4)=0
b, x+7/ 2010+ x+6/2011 =x+5 / 2012 + x + 4 /2013
2. Tìm x sao cho:
a, 2x-3 có giá trị dương
b, 13-5x có giá trị âm
c, x+3/2x-1 > 0
d, x+7/x+3 < 1
Giúp mk vs nha mk đang cần gấp. Mk tick cho. Thank nhìu
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
1)giải phương trình \(\sqrt{8x+1}+\sqrt{46-10x}=-x^3+5x^2+4x+1\)
2)cho x,y,z>0 và xy+yz+zx=670 chứng minh
\(P=\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:
Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)
Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)
\(=\left(x+y+z\right)^3.\)(2)
TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)
Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)
2)Ta có:
\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)
Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)
Áp dụng svac-xơ ta có:
\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)