Cho \(a+b\ge0\)
Chứng minh rằng: \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right)\)
cho 2 số a,b thỏa mãn a+b\(\ge\)0. Chứng minh rằng \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right)\)
cho 2 số a,b thỏa mãn a+b\(\ge\)0. Chứng minh rằng \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right)\)
Lời giải:
Đầu tiên ta sẽ chứng minh $(a^3+b^3)(a^5+b^5)\leq 2(a^8+b^8)(*)$
Thật vậy, $(*)\Leftrightarrow a^3b^5+a^5b^3\leq a^8+b^8$
$\Leftrightarrow a^5(a^3-b^3)-b^5(a^3-b^3)\geq 0$
$\Leftrightarrow (a^5-b^5)(a^3-b^3)\geq 0$
$\Leftrightarrow (a-b)^2(a^4+...+b^4)(a^2+ab+b^2)\geq 0$ (luôn đúng với mọi $a,b$
Do đó $(*)$ đúng
Nhân cả 2 vế của $(*)$ với $a+b\geq 0$ suy ra:
$(a+b)(a^3+b^3)(a^5+b^5)\leq 2(a+b)(a^8+b^8)$
Ta cần chứng minh $2(a+b)(a^8+b^8)\leq 4(a^9+b^9)$
$\Leftrightarrow (a+b)(a^8+b^8)\leq 2(a^9+b^9)$
$\Leftrightarrow a^9+b^9-a^8b-ab^8\geq 0$
$\Leftrightarrow a^8(a-b)-b^8(a-b)\geq 0$
$\Leftrightarrow (a^8-b^8)(a-b)\geq 0$
$\Leftrightarrow (a^4-b^4)(a^4+b^4)(a-b)\geq 0$
$\Leftrightarrow (a^4+b^4)(a-b)^2(a+b)(a^2+b^2)\geq 0$ (luôn đúng với mọi $a+b\geq 0$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a+b=0$ hoặc $a=b$
CMR \(\left(a+b\right)\left(a^3+b^3\right)\left(c^5+c^5\right)\ge4\left(a^9+b^9\right)\) biết \(a+b\ge0\)
Cho \(x+y+z=0\)
Chứng minh rằng: \(a^5\left(b^2+c^2\right)+b^5\left(a^2+c^3\right)+c^5\left(a^2+b^2\right)=\dfrac{1}{2}\left(a^3+b^3+c^3\right)\left(a^4+b^4+c^4\right)\)
Đề hay thật sự, cho x,y,z nhưng chứng minh a,b,c :v
Cho ba số thực a,b,c \(\in\) R. Chứng minh rằng
\(\dfrac{\left(a-b\right)^5+\left(b-c\right)^5+\left(c-a\right)^5}{5}\) = \(\dfrac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\cdot\dfrac{\left(a-b\right)^2+\left(b-c\right)^3+\left(c-a\right)^2}{2}\)
Cho a;b;c\(\ge0\).Chứng minh rằng \(\frac{a^3}{b\left(b+c\right)}+\frac{b^3}{c\left(c+a\right)}+\frac{c^3}{a\left(a+b\right)}\ge\frac{1}{2}\left(a+b+c\right)\)
Cho \(\left|a-c\right|< 3,\left|b-c\right|< 2\) . Chứng minh rằng \(\left|a-b\right|< 5\)
\(=>\left|a-c\right|+\left|b-c\right|< 5\)
\(< =>\left|a-c\right|+\left|c-b\right|< \left|a-c+c-b\right|< 5< =>\left|a-b\right|< 5\)
Cho \(a,b,c\ge0\). Chứng minh rằng: \(a+b+c\ge\frac{3}{2}.\sqrt[3]{\left(a+b\right).\left(b+c\right).\left(c+a\right)}\)
Xét \(2\left(a+b+c\right)=2a+2b+2c=\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\)
Áp dụng bđt cosi cho 3 bộ số ta có :
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)(Dấu "=" xảy ra khi a = b = c)
\(\Rightarrow2\left(a+b+c\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\Rightarrow a+b+c\ge\frac{3}{2}\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\RightarrowĐPCM\)
Cho a,b,c lớn hơn 0. Chứng minh \(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}\)+\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}\)≥\(\dfrac{a+b+c}{9}\)
\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)
Tương tự:
\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)
\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)
Cộng vế:
\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)
\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)