giúp e với 1/20.23+1/23.26+1/26.29+....+1/77.80 < 1/9
Chứng minh rằng; 1/20.23 + 1/23.26 + 1/26.29 +...+ 1/77.80 < 1/9
Giúp mình với.
Đặt vế trái là B
\(3B=\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+...+\frac{80-77}{77.80}\)
\(3B=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}=\frac{1}{20}-\frac{1}{80}\)
\(3B=\frac{3}{80}\Rightarrow B=\frac{1}{80}< \frac{1}{9}\)
Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)
Vậy \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)
CMR: 1/20.23+1/23.26+1/26.29+....+1/77.80 < 1/9
\(\frac{1}{20.23} +\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
= \(\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\frac{3}{80}\)
= \(\frac{1}{80}\) < \(\frac{1}{9}\)
⇒ \(\frac{1}{20.23} +\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\) < \(\frac{1}{9}\) (ĐPCM)
Chứng minh rằng: 1/20.23 + 1/23.26 + 1/26.29 + ... + 1/77.80 <1/9
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80} \)
\(=\frac{1}{3}.(\frac{1}{20}-\frac{1}{23})+\frac{1}{3}.(\frac{1}{23}-\frac{1}{26})+...+\frac{1}{3}.(\frac{1}{77}-\frac{1}{80})\)
=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80})\)
=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{80})\)
=\(\frac{1}{3}.\frac{3}{80}\)
=\(\frac{1}{80}\)<\(\frac{1}{9}\)
Vậy tổng trên nhỏ hơn \(\frac{1}{9}\)
chung minh rang 1/20.23+1/23.26+1/26.29+...+1/77.80<1/9
giup minh voi mai nop r
1/20.23+1/23.26+1/26.29+...+1/77.80 < 3/20.23+3/23.26+3/26.29+...+3/77.80=1/20-1/23+1/23-1/26+...+1/77-1/80
=1/20-1/80=3/80 < 1/9 = 3/27
Chứng minh rằng
\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)
Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)
=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))
=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))
=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))
=>A=\(\frac{1}{3}.\frac{3}{80}\)
=>A=\(\frac{1}{80}\)
Do \(\frac{1}{80}\)<\(\frac{1}{9}\)
Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)
Chứng minh rằng
\(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)
= \(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
= \(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)
Chứng minh rằng:
B=\(\dfrac{3^2}{20.23}+\dfrac{3^2}{23.26}+\dfrac{3^2}{26.29}+...+\dfrac{3^2}{77.80}>\dfrac{1}{9}\)
\(B=\frac{9}{20.23}+\frac{9}{23.26}+\frac{9}{26.29}+....+\frac{9}{77.80}\)
Ta có B= 3(\(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\) )
B= 3\(\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)
B= 3.(\(\frac{1}{20}-\frac{1}{80}\))
B=3.\(\frac{3}{80}\)=\(\frac{9}{80}\)
\(\frac{3}{9}B=\frac{3}{9}.\left(\frac{9}{20.23}+\frac{9}{23.26}+\frac{9}{26.29}+...+\frac{9}{77.80}\right)\)
=> \(\frac{3}{9}B=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+....+\frac{3}{77.80}\)
=\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+....+\frac{1}{77}-\frac{1}{80}\)
=\(\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)
=> \(B=\frac{3}{80}:\frac{3}{9}=\frac{3}{80}.\frac{9}{3}=\frac{9}{80}\)
Chứng minh rằng \(\frac{1}{20.23}\)+\(\frac{1}{23.26}\)+\(\frac{1}{26.29}\)+.....+\(\frac{1}{77.80}\)<\(\frac{1}{9}\)
Trả lời chi tiết nhé >< cảm ơn mọi người
\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)
\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{27.80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(=\frac{1}{3}.\frac{3}{80}\)
\(=\frac{1}{80}< \frac{1}{9}\)
Bạn ơi cách này dễ hiểu hơn nè:
Đặt X =\(\frac{1}{20.23}\)+\(\frac{1}{23.26}\)+..................+\(\frac{1}{77.80}\).Ta có:
3.X= 3.(\(\frac{1}{20.23}\)+\(\frac{1}{23.26}\)+................+\(\frac{1}{77.80}\))
3.X=3.\(\frac{1}{20.23}\)+3.\(\frac{1}{23.26}\)+......................+3.\(\frac{1}{77.80}\)
3.X=\(\frac{3}{20.23}\)+\(\frac{3}{23.26}\)+............................+\(\frac{3}{77.80}\)
3.X=\(\frac{1}{20}\)-\(\frac{1}{23}\)+\(\frac{1}{23}\)-\(\frac{1}{26}\)+...................+\(\frac{1}{77}\)-\(\frac{1}{80}\)
3.X=\(\frac{1}{20}\)-\(\frac{1}{80}\)
3.X=\(\frac{3}{80}\)
X=\(\frac{3}{80}\):3
X=\(\frac{3}{80}\).\(\frac{1}{3}\)
X=\(\frac{1}{80}\)<\(\frac{1}{9}\)
Chúc bạn học tốt!