Cho A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+.......+\dfrac{1}{3^{2018}}+\dfrac{1}{3^{2019}}\) . Chứng minh rằng: A<\(\dfrac{1}{2}\)
AI LÀM ĐƯỢC MÌNH SẼ TICK!!!
Tính
A ) (\(\dfrac{1}{3}\))2 . 9 . 3 -\(\dfrac{1}{2}\)
B) \(\dfrac{1}{4}\)+\(\dfrac{3}{4}\) . \(\dfrac{2}{5}\)
Tính:
\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(\dfrac{3}{8}.19\dfrac{1}{3}\dfrac{3}{8}.33\dfrac{1}{3}\)
\(15.\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)
\(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)
\(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0,45+\dfrac{3}{4}\right).\left(-1\dfrac{5}{9}\right)\)
\(\left(\dfrac{-1}{3}\right)-\left(\dfrac{-3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)
\(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}\)
\(\dfrac{5^4.20}{25^5.4^5}\)
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^24^2}+......+\dfrac{19}{9^2.10^2}\)
Chứng tỏ a <1
Cho A=1+\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2^{100}-1}\)
Chứng minh rằng 50<A<100
thực hiện phép tính (tính hợp lí nếu có thể)
1) \(\left(-\dfrac{1}{2}\right)^2:\dfrac{1}{4}-2.\left(\dfrac{-1}{2}\right)^3+\sqrt{4}\)
2) \(3-\left(\dfrac{-6}{7}\right)^0+\sqrt{9}:2\)
3) \(\left(-2\right)^3+\dfrac{1}{2}:\dfrac{1}{8}-\sqrt{25}+\left|-64\right|\)
4) \(\left(-\dfrac{1}{2}\right)^4+\left|-\dfrac{2}{3}\right|-2007^0\)
5) \(\dfrac{\left(0,4-\dfrac{2}{9}+\dfrac{2}{11}\right)}{1,4-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{1}{3}-0,25+\dfrac{1}{5}}{1\dfrac{1}{6}-0,875+0,7}\)
6) \(\left[2^3.\left(-\dfrac{1}{2}\right)^3+\dfrac{1}{2}\right]+\left[\dfrac{25}{22}+\dfrac{6}{25}-\dfrac{3}{22}+\dfrac{19}{25}+\dfrac{1}{2}\right]\)
tìm x biết
1) \(\dfrac{2}{3}+\dfrac{1}{3}:x=\dfrac{3}{5}\)
2) \(\left(\dfrac{2x}{3}-3\right):\left(-10\right)=\dfrac{2}{5}\)
3) \(2\dfrac{2}{3}:x=2\dfrac{1}{12}:\left(-0,06\right)\)
4) \(\dfrac{3}{7}+\dfrac{1}{7}:x=\dfrac{3}{14}\)
5) \(-\dfrac{3}{5}.x-\dfrac{1}{2}=-\dfrac{1}{7}\)
6) \(\dfrac{1}{5}+2x=-2\dfrac{1}{4}\)
7)\(-\dfrac{1}{2}:x=\dfrac{3}{8}:\dfrac{9}{16}\)
8)\(\dfrac{2}{3}:x=2\dfrac{1}{2}:\left(-0,3\right)\)
9) \(\dfrac{x}{3}=\dfrac{-2}{1,5}\)
Cho \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
Chứng minh : A<1
a, \(\dfrac{2}{3}-\dfrac{2}{5}+\dfrac{2}{9}+\dfrac{2}{13}\)/\(\dfrac{11}{3}-\dfrac{11}{5}+\dfrac{9}{11}+\dfrac{11}{3}\)